Electroencephalogram Neurofeedback: Application in ADHD and Epilepsy

Kerstin Mayer, PhD; and Martijn Arns, PhD

ABSTRACT
The use of electroencephalogram neurofeedback has been studied in a number of psychiatric disorders, especially for the treatment of attention-deficit/hyperactivity disorder (ADHD). However, many clinicians are not aware of this treatment and the level of evidence supporting its use. In this article, we review the evidence for the efficacy of neurofeedback in several psychiatric disorders and also discuss the specific neurofeedback protocols that have been found effective in the treatment of ADHD, such as slow cortical potential, theta/beta ratio, and sensorimotor rhythm neurofeedback. [Psychiatr Ann. 2016;46(10):594-600.]

Neurofeedback is a behavioral therapy technique used to teach or improve self-regulation of brain activity. It is a variant of electroencephalogram (EEG) biofeedback, which aims to help the patient acquire self-regulation over certain brain activity patterns based on operant conditioning principles.1,2 The EEG shows electrical activity of the cerebral cortex and reflects the summation of synchronized excitatory and inhibitory postsynaptic potentials of apical cortical pyramidal cells. The roots of neurofeedback can be traced back to the early 1930s, when the first observations were made that the EEG alpha-blocking response could be classically conditioned.3,4 EEG was more systematically investigated and its efficacy confirmed in the 1940s.5,6 These early studies clearly demonstrated that conditioning principles can be applied to EEG parameters such as the alpha-blocking response.

The first successful application of EEG conditioning with clinical effects, namely anticonvulsant effects, was reported in 1968 by Wyrwicka and...
Sterman. This work involved the training of the sensorimotor rhythm (SMR) in cats. This EEG rhythm was previously associated with stereotyped postures characterized by a complete cessation of spontaneous activity and immobile behavior in the cat. Furthermore, training of this EEG rhythm during wakefulness resulted in increased sleep spindle density during sleep (an EEG rhythm with the same frequency and topographical distribution as SMR) and improved sleep quality in cats, a finding that was also replicated in humans. In a serendipitous finding, the anticonvulsant effects of operant conditioning of this SMR rhythm in cats exposed to the convulsant drug monomethylhydrazine were demonstrated, followed by replications of these effects in humans. These initial findings resulted in what we currently know as “frequency band neurofeedback.” About the same time, the first report of voluntary control over a slow brain potential called the contingent negative variation or “bereitschaftspotential” (readiness potential, due to the property of this potential to emerge when preparing for action, such as when waiting at a traffic light) was reported, which laid the foundation of another well-known neurofeedback approach—slow cortical potential (SCP) neurofeedback.

Frequency band neurofeedback targets abnormal activity in frequency bands, such as high or low power in a specific frequency band or in a ratio of two frequency bands. For attention-deficit hyperactivity disorder (ADHD), this might be a high theta/beta ratio or high theta power and/or low beta power in children, and similar patterns in adults. The goal of frequency band neurofeedback is to activate a specific brain network, which is achieved by changing the amplitude of a specific frequency band. To do so, a therapist either selects the target frequency band according to the individual quantization of neurofeedback could enhance treatment outcome. SCP neurofeedback is focused on learned self-regulation of cortical activation and inhibition. These threshold-regulation mechanisms are slow electrocortical shifts in brain activity. They change periodically from being electrically positive to electrically negative and are described as a phasic tuning mechanism in the regulation of attention. They are generated cortically and subcortically, involving brain stem reticular mechanisms, the thalamus, and the basal ganglia. The main factor contributing to SCP is synaptic activities at apical dendrites in superficial layers of the cortex. Negativation (ie, the signal becoming electrically negative) represents activation, increasing the firing probabilities of the underlying cortical areas, and is caused by long-lasting depolarization of superficial layer apical dendrites. Positivation represents an inhibition and a decrease in firing probabilities. SCPs are related to cognitive performance and motor actions. A positive shift reflects consumption of resources and disfacilitation of excitation thresholds. A negative shift reflects provision of resources and facilitates attention as well as initiation of goal-directed behavior that can be observed in enhanced reaction time, stimulus detection, and short-term memory during the negative shift phase. In SCP neurofeedback, both conditions are trained (activation/negativation and deactivation/positivation). Self-regulation of SCPs is important in disorders with impaired excitation thresholds, such as epilepsy or ADHD.

Both types of neurofeedback (ie, frequency band neurofeedback and SCP neurofeedback) were originally employed in the treatment of epilepsy, but are now also used in the treatment of ADHD. Both ADHD and epilepsy are characterized by difficulties in regulation of cortical excitation thresholds. A meta-analysis of the efficacy of frequency (especially SMR) and SCP feedback treatment in ADHD reported clinical effects with a large effect size (ES) on inattention and impulsivity and a medium ES on hyperactivity.

Neurofeedback has been used for several disorders such as ADHD, epilepsy, migraine, depression, autism, tinnitus, anxiety, and others, but the only evidence-based applications for this technique are for ADHD and epilepsy. Neurofeedback might be beneficial for other disorders, but the body of research is too small to make any valid claims.

ADHD

Several years after Sterman and Friar’s initial demonstration of the anticonvulsant effects of SMR neurofeedback, Lubar and Shouse described the application of this same SMR neurofeedback in a child with hyperkinetic disorder. Employing an A-B-A design, they reported improvements in hyperactivity and distractibility when SMR was up-trained and found that symptoms worsened when reversal training was used. A few years later, these find-
impulsivity (>0.6), with smaller effect sizes for hyperactivity (>0.3). Two RCTs found that neurofeedback was not inferior to treatment with psychostimulants. Some investigations concluded that neurofeedback is an “efficacious and specific” treatment for ADHD, and some still see a need for methodologically improved studies. Additionally, some clinical trials are in the process of publication and preliminary results are promising regarding quality of study design as well as clinical outcome.

In addition to behavioral and clinical improvements, other improvements have also been reported, including faster reaction times, smaller reaction time variability, and reduced error rates. Improvements in brain activity have also been reported, such as improved contingent-negative variation and event-related potentials (brain activity patterns that reflect preparation and attention) in children and adults, as well as improvement in EEG frequency bands. One study investigated the effects of neurofeedback on sleep in children and adults with ADHD and found improved sleep-onset latency and sleep quality after SMR neurofeedback that also mediated the clinical effects of inattention. Furthermore, functional magnetic resonance imaging studies were able to demonstrate structural changes after neurofeedback in healthy participants and in patients with ADHD. These findings provide further support for understanding the underlying mechanism of neurofeedback and its efficacy. The underlying mechanisms of action have also been investigated in theoretical articles and via studies that apply neurofeedback to healthy participants to investigate the effect on neurophysiologic mechanisms and changes.

Details of these studies are not described here, but these studies show that research interest is ongoing as neurofeedback yields such positive and promising results.

However, some of the studies and the reviews and even the meta-analyses themselves have been criticized for methodologic failures and shortcomings. Shortcomings in the design and procedure of neurofeedback studies are the main problems in proving its effectiveness. Aside from the fact that the gold standard of placebo-controlled, randomized, double-blind trials are in the process of publication (such as only including 60% to 34% of the pre-registered sample size) and the use of suboptimal methodology to optimize learning (eg, game-like implementations). Note that in regard to learning principles, if a feedback animation is too exciting and thrilling, it might create a stimulus-reinforcer association instead of a response-reinforcer association, which means that the participants will associate the reinforcement with the stimulus rather than the desired brain activity. Furthermore, motivation and reinforcement need to be given by the therapist,
which makes double-blind, placebo-controlled studies especially hard to implement.

The problems mentioned regarding the studies with no clinical effects were further highlighted in a recent meta-analysis that found overall effects of neurofeedback in ADHD when inspecting parent ratings, but not significant effects for teacher ratings.74 However, when limiting to neurofeedback studies that used “standard” protocols, there were significant clinical benefits for both parent-rated and teacher-rated symptoms.74 Currently, some large multicenter, controlled studies are being conducted75 or in the process of being published.50

From recent conferences it can be concluded that (at least in the completed study)50 a large sample size and well-designed control conditions yield promising results supporting the efficaciousness of neurofeedback. Taken together, neurofeedback can be deemed a viable treatment option for ADHD that is efficacious and specific.

EPILEPSY

Epilepsy is not an official psychiatric disorder but has the second-best evidence in neurofeedback research and is therefore described here.

Early studies employing SMR neurofeedback, such as those by Sterman et al.,76 Lubar and Bahler,77 and later studies employing SCP neurofeedback from the 1990s22,78,79 and early 2000s80 all showed promising anticonvulsant effects in epilepsy. The mechanisms of action are thought to be related to the ability to regulate brain excitation thresholds and therefore prevent over-excitation and a subsequent seizure. Studies from two independent research groups examined this and delivered promising clinical results (for review and meta-analysis see Tan et al.12). SMR and SCP neurofeedback protocols proved to be the most effective in the treatment of epilepsy with focal seizures. However, in the 2000s, this research interest decreased dramatically, with only three results in the literature search for the past 7 years (one review,81 one meta-analysis,72 and one follow-up study).82 The meta-analysis by Tan et al.12 and the review by Nagai81 concluded that neurofeedback was found to produce a significant reduction in seizure frequency. The recent follow-up study was able to demonstrate that clinical effects were maintained even 10 years after treatment,82 as seizure frequency was still reduced and the ability to regulate brain activity was still present. Given that the patient group consisted mostly of treatment-resistant patients, these results are encouraging and clinically meaningful.

OTHERS DISORDERS

Several studies33,84 have also reported on the effect of neurofeedback in other disorders, but only a few controlled and randomized studies33,84 have been conducted for other indications. Therefore, although some indications appear promising, more research is needed to reach solid conclusions for the efficacy of neurofeedback in disorders other than ADHD and epilepsy.

LONG-TERM EFFECTS AND CURRENT POSITION OF NEUROFEEDBACK

Currently, the gold standard of treatment for ADHD is psychostimulant medication, including methylphenidate and various amphetamine formulations with large effect sizes on the group level in the acute treatment of ADHD.85 However, the clinical efficacy of psychostimulant medication decreases over time, as demonstrated in various large-scale studies,86,87 possibly related to an up-regulation of dopamine transporter availability after sustained treatment.88 Therefore, the need for more effective and longer-lasting treatments in ADHD is widely accepted. Because neurofeedback is based on operant conditioning principles, once the regulation of the brain is learned and the treatment was effective, these effects are thought to be permanent. Interestingly, some subsequent studies have all shown that clinical benefits were maintained or even further improved at the 6 month follow-up34,37,53 and even after 2 years.35 Interestingly, patients were still able to regulate their brain activity in the desired direction at these follow-up moments.33,53 The same is true for patients with epilepsy in a 10-year follow-up study.82 Additionally, neurofeedback does not have any severe side effects.67,68

NEUROFEEDBACK IS NOT “MAGIC IN A BOX”

Neurofeedback is part of behavioral psychotherapy and should be applied according to those standards. A positive neurofeedback treatment should be based on individual brain activity, learning principles, a good patient-therapist relationship, motivational components, and possibly accompanying traditional psychotherapy. Neurofeedback should be accompanied by additional behavioral therapy components implied in the sessions. Most SCP neurofeedback studies with children always implement a token system and transfer to daily-life situations. The study by Drechsler et al.54 used extended support from the parents for the daily transfer; all other studies55 kept the parents rather uninvolved. The transfer into daily life can range from handing out transfer cards and the instruction to practice regulation at home, to sitting down and guiding the children into an activated state during their homework or other tasks. This component seems to be an important tool for application of the
learned self-regulation into daily life, be it monitored by parents or by the children on their own.

SELF-DIRECTED EEG NEUROFEEDBACK USING WEARABLE DEVICES

During the past few years, there has been development of “home training devices” or “self-directed neurofeedback” for several reasons, such as the many sessions that are required, travel time, the availability of the therapist, and reduction of costs. To this date, there are no systematic studies that we are aware of on the effect of neurofeedback home-training for psychiatric disorders. Such unsupervised “home training” also implies that the feedback process that is currently performed by a trained clinician can be fully and effectively automated. As indicated above, some of the double-blind studies (implicating that all parties, including the therapist, were blinded) necessitated automated feedback procedures; however, all such studies have been found ineffective,

### CONCLUSION

Overall, it can be concluded that psychiatrists can recommend neurofeedback to patients with ADHD as an effective treatment when standard protocols, such as SMR, SCP, and theta/alpha neurofeedback, are used. However, one should remain cautious regarding the use of neurofeedback for other indications due to a lack of sufficient evidence. Even if some neurofeedback providers sell their product with different claims, therapists should be aware of the evidence base and look critically at the quality of the product as well as its claim. Neurofeedback is an excellent tool for training certain brain networks and therefore improving behavior, but the therapist is still an indispensable component in the treatment.

### REFERENCES


