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THE BURDEN OF DEPRESSION 

Early accounts from the 2nd millennium B.C. in the first Babylo-
nian empire already documented a depression-like state that 
was thought to be caused by demons or gods (Reynolds & Wil-

son, 2013). However, it was not long before Hippocrates (460-377 B.C.) 
ventured a theory of “melancholia” rooted in biology, that presumed 
its origin in the brain. He described it as “fear or sadness that last a 
long time” coupled with “aversion to food, despondency, sleeplessness, 
irritability, [and] restlessness” - a description that resembles modern 
accounts of depression (DeRubeis & Strunk, 2017). Nowadays it is well 
known that depression is a mental health condition, distinct from 
sadness or grief, that is characterized by high symptom heterogene-
ity. Different symptom profiles can be contradictory, for instance a 
depressed patient suffering from sleeping problems can either get too 
little sleep or spend too much time in bed. In the Diagnostic and Sta-
tistical Manual of Mental Disorders (DSM) that aids in the diagnosis of 
mental disorders, this heterogeneity has mostly been disregarded and 
different depression symptom profiles used to be bundled under one 
diagnosis (Allsopp et al., 2019). In recent versions of the DSM more ef-
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fort has been made to delineate distinct depression subtypes. Although 
it is generally assumed that various depression subtypes with different 
etiologies exist (Cai et al., 2020), the evidence for explicit subtypes is 
still lacking. 

Depression in general is both highly prevalent globally and results in 
immense suffering. Approximately 4.4% of all people worldwide are 
affected (World Health Organization, 2017), and 10.6% of people will 
experience a depressive episode at least once throughout their lifetime 
(Herrman et al., 2022) although this lifetime prevalence might be se-
verely underestimated and could in fact be as high as 30-40% (Moffitt 
et al., 2010). Prevalence is highest in older adulthood (55-74 years) and 
women are more affected than men (World Health Organization, 2017). 
In addition to this high incidence, depression has an immense impact 
on quality of life, accounting for 50 million years lived with disabil-
ity (YLD) in 2015, making it the disorder with the highest influence 
on non-fatal health loss (7.5% of all YLD) (World Health Organization, 
2017). When more depressive symptoms are present and symptoms are 
more severe, a person is considered to have major depressive disorder 
(MDD) (Fils et al., 2010). MDD is often so incapacitating that many 
sufferers are unable to maintain employment, sustain relationships and 
retain daily functioning (Marwaha et al., 2023). In addition to greatly 
compromising the individual’s life, the impact on health systems and 
social and economic costs are substantial (McLaughlin, 2011).

The longer a depression lasts and the more severe it is, the more like-
ly it becomes that a person ends their own life (Hawton et al., 2013; 
Lépine & Briley, 2011). Accounting for more than 1 in 100 deaths, sui-
cide is one of the leading causes of death worldwide, with a particu-
larly high ranking in young people (World Health Organization, 2021). 
Although suicide does not only occur in depression, people with MDD 
are 20-fold more likely to die of suicide than the general population 
(Ösby et al., 2001). In addition, the risk of dying of other causes is in-
creased multifold. One reason for that is the higher likelihood to de-
velop a comorbid disease, such as coronary artery disease or obesity. At 
the same time, having a depression increases the risk of cardiac mortal-
ity in those with coronary heart disease, and this risk is elevated with 
higher depression severity (Kupfer et al., 2012).
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When it comes to depression treatments, psychotherapy and pharma-
cotherapy are considered the gold standard of first-line interventions. 
Selective serotonin-reuptake inhibitors (SSRIs) work - as their name 
suggests - by restricting the serotonin transporter protein and thus the 
transport of serotonin back into the presynaptic cell, thereby enhanc-
ing serotonin availability in the synaptic cleft (Sangkuhl et al., 2009). 
Antidepressants, such as SSRIs and serotonin-norepinephrine reuptake 
inhibitors (SNRIs), have been proven effective in treating depression 
(Arroll et al., 2016) although it remains unclear whether serotonin is 
involved in the etiology of depression or whether the effect is driven 
by other mechanisms, such as increased expression and signaling of 
brain-derived neurotrophic factor and other growth factors in hip-
pocampal and cortical areas (Moncrieff et al., 2023; Björkholm, C., & 
Monteggia, L.M., 2016; Castrén, E., & Monteggia, L. M., 2021). Despite 
efficacy at the group level, one of the largest and most influential ran-
domized controlled trials (RCT) in depression, the Sequenced Treat-
ment Alternatives to Relieve Depression (STAR*D) trial, concluded that 
only about a third of MDD patients remitted following an adequately 
dosed treatment course of Citalopram (Rush et al., 2006). Approxi-
mately 50% of patients remitted after two treatment steps, although an 
increased relapse rate was observed after the second treatment course 
than among patients who remitted after only one course. Overall, a 
theoretical cumulative remission rate of 67% after 4 treatment steps 
was reported although some criticism has been raised, proposing even 
lower cumulative remission rates (Pigott, 2014; Pigott et al., 2023). 
Beyond two treatment attempts, the chances to remit drastically de-
creased (~13%). Rush et al. concluded that about a third of patients do 
not achieve remission after as many as 4 adequately dosed antidepres-
sant courses. These patients are considered to have a treatment-resis-
tant depression (TRD) (Gaynes et al., 2020), or – more appropriately 
termed – a difficult-to-treat depression (DTD) (Wilhelm, 2019). The 
STAR*D investigators hypothesized that these patients might have 
benefitted from treatment administered earlier in the course of illness, 
before chronicity had emerged, or from an accelerated transition to a 
more intensive treatment approach, such as noninvasive brain stimula-
tion (NIBS). According to the critical reanalysis of the STAR*D trial, the 
prevalence of such DTD patients might be even higher than initially 
suggested by STAR*D (Pigott et al., 2023). 
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NONINVASIVELY STIMULATING THE BRAIN

One intervention that has proven effective for relieving symptoms 
of DTD is repetitive transcranial magnetic stimulation (rTMS). TMS 
induces a strong, rapidly changing magnetic field delivered nonin-
vasively to the underlying cortex via a magnetic coil placed on the 
head (Barker et al., 1985; Roth et al., 1991). The magnetic pulses pass 
the skull unimpededly and create an electric field through electro-
magnetic induction. This electric field leads to a change in synaptic 
activity in the stimulated cortical tissue, resulting in excitation or 
inhibition of neurons (Huerta & Volpe, 2009; Jahanshahi & Rothwell, 
2000). Early uses of TMS included the mapping of the motor cor-
tex and investigation of cognitive functions (Jahanshahi & Rothwell, 
2000; A Pascual-Leone et al., 1994; Alvaro Pascual-Leone & Hallett, 
1994). First case studies and small pilot trials examining TMS for the 
treatment of depression were published as early as 1993 (Höflich et 
al., 1993), with promising effects in non-psychotic depression (George 
et al., 1995; Pascual-Leone et al., 1996). Already in these early studies, 
the prefrontal cortex (PFC) was the major focus of stimulation and 
remained it till this day.
Theories claiming a hemispheric imbalance of left hypo- and right 
hyperactivity in the PFC of depressed people guided application of 
TMS, applying high frequency rTMS, that was considered to have 
excitatory effects, over the left PFC, and low frequency, thought 
to be inhibitory, over the right PFC (Henriques & Davidson, 1991; 
Soares & Mann, 1997). Although both the imbalance hypothesis and 
the theory that high frequency stimulation is necessarily excitato-
ry and low frequency stimulation inhibitory have been disproven 
since (Fitzgerald et al., 2006; van der Vinne et al., 2017), rTMS is still 
mainly applied over the dorsolateral prefrontal cortex (DLPFC) us-
ing the same high and low frequency protocols. One well-founded 
hypothesis why these protocols have been working in ameliorating 
depression symptoms despite the original hypotheses being incor-
rect is related to dysfunctions in brain networks with nodes in the 
DLPFC (Downar & Daskalakis, 2013; Williams et al., 2023). Although 
its precise working mechanisms are still unknown, TMS (over the 
cortex) has been shown to modify activity in subcortical regions as 
well as cortico-subcortical functional connectivity. It is hypothesized 
that these changes normalize activity within and between networks, 
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such as default mode network hyperactivity (Liston et al., 2014; Sieb-
ner et al., 2022), while the long-term effects of TMS are presumed to 
be induced by different plasticity mechanisms (Jannati et al., 2023; 
Thomson et al., 2020).

Since the early cognitive and clinical studies, research and clinical 
implementation of rTMS have been on the rise worldwide, with the 
number of publications increasing steeply and continuously (Mat-
suda et al., 2021; McLean, 2019; Rossi et al., 2009). Nevertheless, the 
first approval by the food and drug administration (FDA) was a long 
time coming; only in 2008 the Neuronetics Neurostar System was 
approved for the treatment of MDD patients who had failed prior 
antidepressant treatment (Cohen et al., 2022). Since then, many com-
panies have followed suit, resulting in 24 TMS device approvals with 
different stimulation protocols and for several psychiatric disorders, 
such as obsessive-compulsive disorder (OCD). Besides MDD, rTMS 
has been investigated for the treatment of a multitude of other dis-
orders, such as substance use disorder, post-traumatic stress disorder 
(PTSD), schizophrenia or Alzheimer’s disease with varying levels of 
success (Cotovio et al., 2023; Lefaucheur et al., 2020). 

In MDD, safety and treatment efficacy have been demonstrated in 
numerous systematic reviews, meta-analyses and even umbrella re-
views evaluating multiple meta-analyses (Berlim et al., 2014; Brunoni 
et al., 2016; Fitzgerald et al., 2022; Razza et al., 2020) with most com-
mon side effects being headaches and scalp discomfort at the stim-
ulation site (Milev et al., 2016). Although epileptic seizures are often 
mentioned in relation to rTMS, these are considered to be related to 
rTMS protocols exceeding safety guidelines and occur rarely (0.01-
0.1%), at a rate comparable to or even lower than that of most psy-
chotropic medication (Rossi et al., 2009, 2021; Steinert & Fröscher, 
2017). Treatment efficacy of rTMS consistently outperforms sham 
with estimated response rates of about 50% and remission rates of 
30% in RCTs, while effectiveness in real-world settings is general-
ly observed to be higher (Carpenter et al., 2012; Donse et al. 2018). 
Moreover, all available and tested rTMS protocols seem to have sim-
ilar efficacy at the group level (Berlim et al., 2013; Blumberger et al., 
2018; J. Chen et al., 2014; Kedzior et al., 2014; Kishi et al., 2023). When 
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recalling the STAR*D finding that the likelihood to remit to another 
antidepressant medication after two failed antidepressant treatment 
attempts was approximately 13%, and taking into account that these 
rTMS findings are reported in such medication-resistant patients, re-
mission rates of 30% can be considered rather impressive. However, 
despite this good overall efficacy of rTMS at the group level, 50-70% 
of patients achieve only partial or no symptom relief from rTMS. 
In recent years, much research has focused on enhancing those re-
mission and response rates, utilizing different approaches. Accelerat-
ed TMS (aTMS), administering multiple sessions per day, has proven 
to be effective and feasible while reducing time demands for patients 
and simultaneously enabling application of more sessions than is 
customary during a standard treatment course (Cole et al., 2021). 
Whether aTMS actually speeds up antidepressant effects remains an 
open question, as evidence is inconclusive (L. Chen et al., 2023). Deep 
TMS (dTMS) was developed to penetrate deeper brain regions that 
are implicated in causing depressive symptoms. Enhanced stimula-
tion of white matter tracts might facilitate engagement of subcor-
tical targets thereby improving antidepressant effect (Zibman et al., 
2021). DTMS has proven as effective as standard rTMS but not more 
effective (Levkovitz et al., 2015). Another, relatively novel approach is 
capable of synchronizing TMS pulses (sTMS) to the individual’s brain 
oscillations. This approach is based on the assumption that the TMS 
effect is brain-state dependent, meaning for instance that oscillations 
have phases of differential excitability, making the respective brain 
region more or less receptive for input. This moreover suggests that 
stimulating at certain oscillatory phases results in more activation of 
connected brain regions which could improve TMS effect (Sack et al., 
2023). While sTMS has proven valuable for research purposes, more 
research is needed to evaluate its potential for enhancement of treat-
ment outcome. Finally, a low-tech solution to improving response 
rates proposes that delivering higher numbers of TMS sessions may 
benefit a slow response subgroup that does not achieve response or 
remission after a standard rTMS course of 20-30 sessions (Kaster et 
al., 2019; McDonald et al., 2011). However, administering ad libitum 
rTMS sessions is expensive and time-consuming and being able to 
predict who might benefit from more extensive treatment would be 
helpful.  
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Although many promising TMS developments are underway, no 
solution has been proposed that can reliably enhance remission rates 
at the group level.

MOVING TOWARDS PRECISION

Findings of increasing treatment resistance with fruitless treat-
ment attempts - as shown by STAR*D for instance - together with 
dire statistics on increased suicide risk with longer-lasting disease 
course and the immense burden of depression, demonstrate the 
need to identify the right intervention and start treatment early 
on since this could potentially be life-saving (Fogel et al., 2006). Al-
though these statistics are commonly known, treatments are usually 
still prescribed in a trial-and-error fashion, meaning that individu-
al patient characteristics are not taken into account for treatment 
decisions. Usually this means following a stepped-care approach 
(e.g. the stepped care model proposed by the National Institute for 
Health and Care Excellence (Rivero-Santana et al., 2021) or by the 
Dutch Multidisciplinary Guideline for Depression (Meeuwissen et 
al., 2019)), trying out a standardized sequence of multiple milder, ev-
idence-based treatments, such as SSRIs for depression, before esca-
lating to more intensive interventions, such as rTMS or ECT (Arns 
et al., 2023). To move away from this rather ineffective system, preci-
sion psychiatry has become a major focus of research (Williams et al., 
2023), aiming at improving overall treatment efficacy by prescribing 
treatments targeting the individual by means of so-called biomark-
ers. A biomarker is defined as a biological or behavioral character-
istic “that is objectively measured and evaluated as an indicator of 
normal biological processes, pathogenic processes, or pharmacolog-
ic responses to a therapeutic intervention” (Biomarkers Definitions 
Working Group, 2001).

A neural circuit approach might aid in effectively moving towards a 
true individualistic treatment model by identifying distinct disease 
types, based on circuit dysfunction, that may lie outside or overlap 
the boundaries of traditional mental disorders, reflecting disorder 
heterogeneity (Goldstein-Piekarski et al., 2020; Williams & Hack, 
2020). Important steps have been taken in identifying such imbal-
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ances in neural circuits and consequently particular biotypes that 
might respond to one treatment rather than another (Scangos et al., 
2023; Williams, 2016). However, bridging the gap between research 
and translation of that research to clinical routines has presented a 
major challenge for precision psychiatry. One reason for this, as has 
been mentioned before, might be the rather outdated DSM and In-
ternational Classification of Disease (ICD) that group disorders too 
broadly to adequately account for disorder heterogeneity (Williams 
et al., 2023). However, initiatives such as the Research Domain Crite-
ria (RDoC) provide a framework that fosters the use of heterogene-
ity in psychopathology with malleable definitions of disorders that 
are able to evolve with new research findings (Williams et al., 2023). 
Through such neural circuitry approaches, precision psychiatry 
might eventually be able to match each patient to an individualized 
intervention, irrespective of whether this treatment is indicated for 
the patient’s disorder.  At present, a more practical way of achieving 
personalization is through treatment stratification, which, based on 
a shared characteristic, identifies patient subgroups that are more 
likely to respond to an evidence-based, approved treatment option 
for the given condition. At the same time, reduced likelihood to re-
spond to a given treatment is taken into account, thereby effectively 
diminishing the number of available options and, thus, increasing 
chances to respond (Arns et al., 2022; Grzenda & Widge, 2023). Since 
stratification options are limited to approved, effective treatments 
for the disorder, the risk of causing harm is eliminated. Stratifica-
tion might therefore help to move from the traditional stepped care 
prescription approach to a more streamlined and, most importantly, 
effective matched-care concept (Arns et al., 2023). 

NEUROIMAGING METHODS FOR BIOMARKER IDENTIFICATION

One method to identify psychiatric biomarkers is through the use of 
brain imaging techniques, such as electroencephalography (EEG) or 
magnetic resonance imaging (MRI).
MRI uses a large magnetic field that leads to alignment of atomic 
nuclei with magnetic properties, such as hydrogen nuclei, which 
can be measured by a receiver coil (Grover et al., 2015). Due to dif-
ferences in water content, different types of tissue can be made visi-
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ble. Functional MRI (fMRI) uses so called blood-oxygen-level depen-
dent (BOLD) signals, measuring changes in the magnetic property 
of hemoglobin caused by a change in oxygenation level of the blood 
(Glover, 2011). BOLD contrast indicates local changes in brain activ-
ity, for instance when performing a task. MRI can therefore provide 
structural images of gray and white matter tissue and brain lesions 
(structural MRI), as well as information about changes in functional 
brain activity within different areas (fMRI). Due to the large magnet 
that is needed to generate the magnetic field, a shielded room around 
the magnet and large quantities of liquid helium used for cooling in 
conventional scanners, MRI requires a considerable amount of space 
and is rather expensive.

EEG, on the other hand, can be measured using small, even portable, 
equipment, and is thus less cost-intensive and hence better suited 
for use in smaller practices. Electrodes, embedded in an EEG cap, 
noninvasively connect to the skin, usually by means of a conductive 
electrode gel. These electrodes measure postsynaptic potentials of 
large groups of pyramidal neurons that are synchronized and orient-
ed towards the electrode in the underlying cortex (Beniczky & Scho-
mer, 2020). The resulting signal is the difference in electric poten-
tial measured between two electrodes (the recording electrode and 
a reference electrode), and is depicted as waves on a screen. Due to 
the nature of the EEG, only cortical activity – i.e., close to the record-
ing electrode- but no subcortical activity can be measured (Beniczky 
& Schomer, 2020). EEG activity is usually described in terms of its 
power spectrum at different frequencies. Although there is no con-
sensus on the exact frequency boundaries, the most commonly de-
scribed ones are: delta (<4 Hz), theta (4–7.5 Hz), alpha (7.5–12.5 Hz), 
beta (12.5–30 Hz) and gamma (30–40 Hz) (Newson & Thiagarajan, 
2019). Frequency power is measured during wakeful rest - called rest-
ing-state EEG - or the performance of tasks, or by event-related po-
tentials (ERPs), describing slight changes in the EEG signal following 
a specific event, such as the presentation of a stimulus (Schomer & 
Silva, 2011). 
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One issue in EEG biomarker research has been the variability in 
processing methods being used to clean the raw EEG signal. These 
differences make it difficult to compare studies and might result in 
unsuccessful replication attempts (Widge et al., 2019). Thus, optimi-
zation of EEG processing is essential to sound biomarker research. 
Advantages and disadvantages of different processing parameters and 
challenges of signal cleaning have been discussed elsewhere (Mumtaz 
et al., 2021; Yao et al., 2019) and are outside the scope of the present 
work. However, Chapter 3, to some extent, focuses on the standard-
ization and optimization of signal processing.
Due to its ease of implementation and lower cost compared to other 
imaging techniques, EEG is a suitable method to identify biomarkers 
and apply them in clinical practice. Neuroimaging biomarkers, capa-
ble of identifying biological substrates and unbalanced neurocircuit-
ry underlying disease, have been a major focus of research with mul-
tiple different resting-state, task-dependent and treatment-emergent 
patterns suggested as potential predictors. However, a meta-analysis 
by Widge et al., published in 2019, identified profound flaws in EEG 
biomarker studies, criticizing a lack of out-of-sample validation, in-
sufficient direct replication, differing processing methods, and gen-
eral publication bias with the conclusion that EEG biomarkers can-
not reliably predict depression treatment outcome yet (Widge et al., 
2019). 

A QUEST FOR BIOMARKERS AND CLOSING THE TRANSLATIONAL GAP – 

AIMS AND OUTLINE

As the previous pages highlight, the urgency and great personal 
and societal burden of depression, the high occurrence of a diffi-
cult-to-treat patient group and the lower chance of remission with 
increasing treatment failures necessitate identifying the best treat-
ment option for each person early on during the treatment course, 
and especially earlier than is presently standard. The current system 
of trial-and-error treatment prescription is outdated, and the cry for 
modernization through personalization is getting louder. For this 
reason, robust, tested and validated predictors of treatment outcome 
that can advance to the implementation stage without risk of harm 
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are needed. However, it is well-known that a translational gap exists 
between biomarker research and treatment personalization in psy-
chiatry that prevents individualized mental health care from making 
headway (Carvalho et al., 2020; Fernandes et al., 2017). Despite good 
progress in the past years, full precision psychiatry at the personal 
level, transcending established disease boundaries, is not quite ready 
for clinical practice. Treatment stratification might be able to offer 
an intermediate solution based on patient subgroups instead of the 
individual, and stratifying each patient to one of multiple approved, 
effective interventions for a given disorder, thereby ensuring that 
everyone will receive their individual best treatment option out of 
the tested alternatives. The current work proposes that, thanks to 
these characteristics, stratification can bridge the translational gap 
between biomarker development and application. This can be real-
ized within the framework of a stepped care approach, informing 
best treatment choice at the individual’s disease stage by means of 
neurophysiology.   

In order to reach this goal, it is crucial to first improve on previous 
criticism of biomarker research to identify promising robust predic-
tors. In the second Chapter, the state-of-the-art of imaging biomark-
ers, 5 years after the critical meta-analysis of Widge et al. (Widge et 
al., 2019) will be introduced. It evaluates, based on sample size and 
replication attempts, which biomarkers are most robust and worthy 
of bringing to implementation. 

One of these is the individual alpha frequency (iAF) which had al-
ready been investigated as predictor for both attention-deficit hyper-
activity disorder (ADHD) and MDD albeit with inconsistent results 
(Arns et al., 2008; Arns, Drinkenburg, Fitzgerald, et al., 2012; Arns et 
al., 2018; Corlier et al., 2019; Krepel et al., 2018, 2020; Roelofs et al., 
2020). One potential reason for these discrepancies in findings could 
be the vast differences in methodology, such as data cleaning, uti-
lized across these studies, which has been another point of critique 
of previous biomarker studies. Hence, in Chapter 3, 108 EEG data 
processing permutations were evaluated in a large dataset by means 
of iAF maturation in childhood and early adolescence to standardize 
and optimize detection of alpha oscillations and identification of the 
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alpha peak. The resulting biomarker, Brainmarker-I, was subsequent-
ly evaluated in multiple approved ADHD treatments and validated 
through assigning predicted remitter status in a blinded fashion in 
independent data, to ensure that any potential predictions did not 
represent spurious findings.
The same strategy was adopted in Chapter 4 assessing stratification 
to approved treatments for MDD, such as sertraline, different rTMS 
protocols and electroconvulsive therapy (ECT), once more compris-
ing multiple, rigorous blinded out-of-sample validations. This MDD 
prediction was augmented with another higher frequency TMS treat-
ment protocol in Chapter 5.

All studies utilized clinical datasets for biomarker development to en-
sure that heterogeneity was accounted for, and focused on remission 
as primary study outcome, since residual symptoms after treatment 
represent a higher risk for relapse (Paykel, 2008).  

Five years after Widge and colleagues published their critique of EEG 
biomarkers, we show that research on neuroimaging biomarkers can 
and has improved on former standards, for instance by attempting 
to replicate findings in independent samples. The following chapters 
are dedicated to demonstrating that biomarker research has succeed-
ed in identifying some robust imaging predictors that are ready to be 
implemented in clinical practice.
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ABSTRACT

Noninvasive brain stimulation (NIBS) treatments have gained 
considerable attention as potential therapeutic intervention 
for psychiatric disorders. The identification of reliable bio-

markers for predicting clinical response to NIBS has been a major 
focus of research in recent years. Neuroimaging techniques, such as 
electroencephalography (EEG) and functional magnetic resonance 
imaging (MRI), have been used to identify potential biomarkers that 
could predict response to NIBS. However, identifying clinically ac-
tionable brain biomarkers requires robustness. In this systematic re-
view, we aimed to summarize the current state of brain biomarker 
research for NIBS in depression, focusing only on well-powered stud-
ies (N ≥ 88) and/or studies that aimed at independently replicating 
previous findings, either successfully or unsuccessfully. A total of 220 
studies were initially identified, of which 18 MRI studies and 18 EEG 
studies met the inclusion criteria. All focused on repetitive transcra-
nial magnetic stimulation treatment in depression. After reviewing 
the included studies, we found the following MRI and EEG biomark-
ers to be most robust: 1) functional MRI-based functional connectiv-
ity between the dorsolateral prefrontal cortex and subgenual anterior 
cingulate cortex, 2) functional MRI-based network connectivity, 3) 
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task-induced EEG frontal-midline theta, and 4) EEG individual alpha 
frequency. Future prospective studies should further investigate the 
clinical actionability of these specific EEG and MRI biomarkers to 
bring biomarkers closer to clinical reality.

EVALUATING ROBUSTNESS OF BRAIN STIMULATION  
BIOMARKERS FOR DEPRESSION: A SYSTEMATIC REVIEW 
OF MAGNETIC RESONANCE IMAGING AND ELECTRO- 
ENCEPHALOGRAPHY STUDIES.

The search for biomarkers of clinical response to non-invasive brain 
stimulation (NIBS) treatments has been a major focus of attention 
over the last decade. Since the introduction of the DSM-5 in 2013 an 
even stronger focus on biomarker research was ignited by the launch 
of the National Institute for Mental Health (NIMH) Research Do-
main Criteria (RDoC) project. A few years later, NIMH made RDoC 
inclusion mandatory for NIMH funded research, and the term ‘per-
sonalized medicine’ transitioned into the now more frequently used 
term ‘precision psychiatry’. At the same time, some of the largest 
biomarker studies for major depressive disorder (MDD) emerged, 
such as the International Study to Predict Optimized Treatment in 
Depression (iSPOT-D) (Williams et al., 2011), EMBARC (Establishing 
Moderators and Biosignatures of Antidepressant Response for Clin-
ical Care) (Trivedi et al., 2016), or CAN-BIND (Canadian Biomarker 
Integration Network in Depression)(Lam et al., 2016). In parallel, a 
wider adoption of NIBS techniques emerged, such as repetitive tran-
scranial magnetic stimulation (rTMS) for the treatment of MDD and 
other conditions such as obsessive-compulsive disorder (OCD) or ad-
diction, with currently more than 24 FDA device approvals (Cohen 
et al., 2022), as well as transcranial electrical stimulation (tES). Many 
NIBS studies have been complemented by imaging work (Blumberg-
er et al., 2018; Corlier et al., 2019; van Dijk et al., 2022). Since many 
NIBS applications have built upon neuroscientific knowledge (e.g., 
frontal asymmetry) and given the focus on interventional psychiatry 
and brain circuit therapeutics (Siddiqi, Schaper, et al., 2021; Spellman 
& Liston, 2020), identifying NIBS biomarkers is of great importance, 
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both to improve clinical outcomes, and to validate hypothesized 
working mechanisms. We, therefore, aim to systematically review 
the current state of biomarker-driven precision psychiatry for NIBS. 
Several prior reviews and meta-analyses have investigated biomarkers 
for depression focused on EEG (Olbrich et al., 2015) or MRI (Wingen 
et al., 2020) and a critical meta-analysis questioned the usefulness 
of EEG biomarkers for guiding antidepressant response (Widge et 
al., 2019). This latter meta-analysis raised valid concerns about bio-
marker studies criticizing a lack of, particularly out-of-sample, repli-
cations, and demonstrating strong evidence for publication bias, with 
overrepresentation of studies with large effects and underrepresen-
tation of null findings. This highlights the need for well-powered 
studies and out-of-sample validations to identify clinically actionable 
biomarkers. This systematic review, thus, focused on 1) adequately 
powered imaging studies and 2) studies that attempted to (out-of-
sample) replicate earlier findings.

Concretely, biomarkers were considered robust when they were de-
rived from an adequately powered study and/or shown to be replica-
ble. The aim of this systematic review was to systematically extract 
robust biomarkers of NIBS treatment response.

INCLUSION CRITERIA

One of the main criticisms of Widge et al. (Widge et al., 2019) was 
that EEG biomarker studies suffered from low sample sizes (median 
N=25). Therefore, to prevent inclusion of underpowered studies and 
determine the right minimum sample size for inclusion, we first con-
sulted power calculations from pivotal biomarker studies (see sup-
plement). Given these pivotal trials yielded inconsistent sample-size 
justifications, we conducted a power calculation in GPower 3.1. (Faul 
et al., 2007) to determine a minimum sample size to define robust 
studies. We used a categorical outcome measure reflecting the differ-
ence in biomarker presence between responders and non-responders 
expressed as a medium effect size (Cohen’s d=0.5) with an alpha level 
of p<0.05 and power of 0.7, resulting in a sample size of N=88. Fur-
thermore, studies with smaller sample size could be included on the 
condition that subsequent replication studies were reported in an 
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independent sample.  Studies investigating pre-treatment biomarkers 
of any NIBS modality and protocol were included. Studies identify-
ing treatment-emergent biomarkers (biomarkers that reflect changes 
during treatment), were not taken into account in this review since 
such biomarkers would require high accuracy to justify stopping a 
treatment course halfway. Ideally, several studies found the same di-
rection of effect in independent samples. 

The exact search terms can be found in S2.1. Figure 2.1 visualizes the 
inclusion/exclusion and final selection of studies for EEG and MRI.

RESULTS

Results are summarized below as well as in Figure 2.1, with biomark-
ers grouped thematically. 

Information on the included MRI and EEG studies are summarized 
in Table 2.1 and 2.2, respectively. The systematic review only yield-
ed rTMS studies since no studies on other NIBS/TES modalities 
met our inclusion criteria. rTMS is a technique that can be used to 
non-invasively modulate brain activity, based on the principles of 
electromagnetic induction (Baeken et al., 2019). In the specific case of 
depression treatment, mostly the left DLPFC is stimulated (O’Rear-
don et al., 2007). When a different stimulation location was used or 
the biomarker was protocol-specific, this is explicitly stated. Addi-
tionally, a detailed description of technical terms used in this section 
can be found in Figure 2.4.



31

Figure 2.1. Flow diagram of total studies identified, excluded, and included in the systematic 
review for electroencephalography (EEG) biomarkers (left) and magnetic resonance imaging 
(MRI) biomarkers (right), as well as all biomarkers identified and the most robust biomark-
ers that emerged from this systematic review (1, 2 for EEG and 3, 4 for MRI). Records were 
excluded on the basis of the abstract if they turned out to be nonhuman studies, were not 
original research, pertained to a pathology other than major depressive disorder or to a 
biomarker other than EEG/MRI or a treatment other than noninvasive brain stimulation. 
Prespecified exclusion criteria were 1) treatment-emergent biomarker and 2) sample size <88 
and no replication. DLPFC, dorsolateral prefrontal cortex; iAF, individual alpha frequency; 
rACC, rostral anterior cingulate cortex; sgACC, subgenual anterior cingulate cortex.
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MRI BIOMARKERS

Anatomical MRI: Cortical thickness
In a first study, Boes et al. reported thinner rostral anterior cingu-
late (rACC) cortex at baseline to be associated with better clinical 
improvement (Boes et al., 2018). However, subsequent work failed 
to replicate this finding (Baeken et al., 2021) albeit here accelerated 
intermittent theta burst stimulation (iTBS) was used, whereas Boes 
and colleagues used 10 Hz rTMS. 
 

fMRI: DLPFC-Subgenual ACC functional connectivity
In an influential 2012 study, Fox and colleagues suggested that the 
DLPFC (as part of the Central Executive Network) should only be seen 
as an entry point to a network relevant to the pathophysiology of de-
pression (Fox et al., 2012). They demonstrated that clinical benefit of 
rTMS for depression was related to intrinsic functional connectivity 
(FC) of the respective DLPFC target to the sgACC (as part of the De-
fault Mode Network), as determined by resting-state functional MRI 
(rs-fMRI). This functional connectivity was indexed as ‘anti-correla-
tion’ of the sgACC to prefrontal cortical areas, and suggestive of a way 
to individualize prefrontal rTMS sites for MDD treatment by selecting 
the most sgACC-anti-correlated prefrontal site.

Several studies have attempted to replicate this finding, with suc-
cessful conceptual replications by Weigand and colleagues (Weigand 
et al., 2018), Cash (Cash et al., 2019), Siddiqi (Siddiqi, Weigand, et al., 
2021) and Elbau and colleagues (Elbau et al., 2023). However, studies 
in which a whole brain FC analysis was performed, using the sgACC 
as seed-region showed no relationship between functional anti-cor-
relations between the seed and stimulation targets in the left DLPFC 
and response (Baeken et al., 2014, 2017; Ge et al., 2020; Hopman et 
al., 2021; Persson et al., 2020; Salomons et al., 2013). These non-rep-
lication studies are all based on individual rs-fMRI data. Hopman 
and colleagues even suggested an inverse relationship, i.e., stronger 
connectivity between the sgACC and stimulation site was related to 
improved clinical response (Hopman et al., 2021).

The studies by Fox et al. (Fox et al., 2012) and Weigand et al. (Weigand 



33

et al., 2018) employed a normative functional connectome to derive 
FC. Cash et al. reasoned that using individual rs-fMRI data instead 
of a normative functional connectome may potentially improve 
TMS-personalization (Cash et al., 2019). Besides replication of previ-
ous results based on the normative connectome, this study showed 
that the relation between functional anti-correlation and clinical 
response was preserved when individual rs-fMRI data were used in-
stead of group connectome data. 

In 2021, Cash et al. introduced new insights into the relationship be-
tween FC and clinical responses (Cash et al., 2020). Instead of the 
direct FC between the stimulation site in the left DLPFC and the 
sgACC, the proximity between the clinically applied stimulation site 
and the rs-fMRI-personalized target in the left DLPFC was found to 
be related to clinical response. This relationship was not significant 
when personalized targets were replaced by a group average target 
derived from a normative functional connectome, arguing for the 
first time for the advantages of using individual rs-fMRI data. Siddiqi 
et al. (Siddiqi, Weigand, et al., 2021) confirmed the importance of dis-
tance and even reported a response rate of 100% for patients whose 
stimulated target was within 25 mm of the personalized target. 

Recently, Elbau et al. published the largest study (N=295), focusing 
on the potential of sgACC connectivity to infer TMS coil positions, 
as of now (Elbau et al., 2023). Although an association between FC 
between the sgACC and left DLPFC target and clinical response was 
observed, this association was much weaker (r=-.16) compared to 
previous studies (e.g. r=-.355 (Fox et al., 2012)), with low explained 
variance (3%). Only when subject-specific TMS-induced electric field 
simulations were performed and a weighted seedmap method intro-
duced by Cash et al. (Cash, Cocchi, et al., 2021) was used to derive the 
time series of the sgACC, the weak but robust correlation was found. 
Of note, this relation was stronger in a subgroup of patients with 
strong global signal fluctuations due to burst breathing patterns (El-
bau et al., 2023). It was suggested that this weaker relationship could 
potentially be attributed to the relatively low-resolution of the rs-fM-
RI data (voxel size 5x5x5mm) (Siddiqi & Philip, 2023). Indeed, better 
data quality could lead to better predictions and nowadays more so-
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phisticated scanning sequences such as multi-echo and multi-band 
sequences, are available (Lynch et al., 2020). Moreover, studies that 
showed stronger relations between anti-correlations and clinical 
responses based on high(er) resolution rs-fMRI data used strong 
smoothing parameters, effectively lowering the spatial resolution.
FC between the sgACC and the left DLPFC has been studied exten-
sively in relation to clinical response to rTMS treatment in MDD. 
This information can be used to define personalized coil-positions 
and might in the future become a robust MRI-derived biomarker. 
However, optimal methodology to compute FC needs further inves-
tigation, and future prospective studies are warranted to demon-
strate utility of this approach on the individual level. 

fMRI: Lesion Network Mapping
In addition to using functional connections between specific brain 
regions as potential biomarkers, connectivity of stimulation sites 
with brain networks, in line with previous lesion network mapping 
(Boes et al., 2015) have also been related to clinical response. A gen-
eral depression network was identified by studying FC profiles from 
the normative connectome of 14 independent datasets including data 
on brain lesions, TMS, or deep brain stimulation (DBS), represent-
ing different sources of causal effects (Siddiqi, Schaper, et al., 2021). 
Correlations between the individual connectivity maps of the TMS 
stimulation site and the depression network predicted the efficacy of 
the stimulation target. Cash et al. used a comparable approach to de-
rive a network related to aberrant emotional processing in MDD pa-
tients, using coordinate network mapping of spatially heterogeneous 
coordinates (Cash et al., 2023). Of note, this emotional network re-
sembles the depression network by Siddiqi et al. (=0.47, p=0.00)(Sid-
diqi, Schaper, et al., 2021). Closer proximity between the stimulation 
target and the emotional-network-derived personalized targets was 
associated with better clinical response (Cash et al., 2023). 
These findings suggest that in the future, effective rTMS stimulation 
sites could be derived from correlations between individual connec-
tivity profiles and the depression network. 
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fMRI: ML-derived biotype approach
Using FC as input to machine learning (ML) approaches, Drysdale 
et al. (Drysdale et al., 2017) identified four clusters, called biotypes, 
which in a subsequent validation showed differential sensitivity to 
response to rTMS over the dorsomedial prefrontal cortex (dmPFC). 
Subtype 1, represented by reduced connectivity in a fronto-amygda-
lar network and reduced connectivity to anterior cingulate and or-
bitofrontal areas, showed a high partial response rate of 83% (25%, 
61% and 30% for subtypes 2, 3 and 4, respectively). Of note, partial 
response was defined as a >25% reduction in Hamilton depression 
rating scale (HDRS), albeit results were similar when using the more 
traditional >50% cut-off for response but predicted full-response was 
lower (e.g. ~63% for biotype 1). 

Later work by Dinga (Dinga et al., 2019) failed to replicate these find-
ings in a more heterogeneous sample of 187 patients with depres-
sion and anxiety. Their analysis led to three instead of four clusters. 
Neither the canonical correlates nor the clusters were statistically 
significant. Potential methodological explanations for this non-rep-
lication are overfitting of the nonregularized canonical correlation 
analysis and arbitrary definitions of the subtypes (Dinga et al., 2020). 
Also, variations in the clinical sample characteristics might explain 
the non-replication (Grosenick & Liston, 2020). 

Figure 2.2.(page 36) Overview of study details on the included magnetic resonance imaging 
studies based on sample size ((N ≥ 88; highlighted in green) or on replication work (high-
lighted in blue). Strength of finding reports the area under the receiver operating charac-
teristic curve (AUC), effect size, correlation coefficient, or another measure of effect size, 
depending on what was reported in the article. Total N refers to the full sample size used to 
compute the biomarker while group N is the sample size of the group in which the biomarker 
was tested for repetitive transcranial magnetic stimulation (rTMS). ACC, anterior cingulate 
cortex; aiTBS, accelerated intermittent theta burst stimulation; ANOVA, analysis of vari-
ance; BDI, Beck Depression Inventory; DBS, deep brain stimulation; DLPFC, dorsolateral 
prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; HDRS, Hamilton Depression Rat-
ing Scale; MADRS, Montgomery–Åsberg Depression Rating Scale; QIDS, Quick Inventory of 
Depressive Symptomatology; rsFC, resting-state functional connectivity; sgACC, subgenual 
ACC.
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Alternative Finding

Thicker cortex in the right caudal part 
of the ACC at baseline was associated 
with better clinical response 3 days 
after stimulation

Responders showed significantly 
stronger rs FC anti-correlation between 
the sgACC and parts of the left superior 
medial prefrontal cortex

Higher baseline connectivity between 
sgACC and dlPFC was associated with 
better clinical response.

FC between sgACC and medial orbito-
frontal cortex at baseline could distin-
guish aiTBS responders from non-
responders

Clinical response (post-treatment and 
12 weeks after rTMS) was related to 
lower functional connectivity between 
the sgACC and the right DLPFC

Baseline functional connectivity be-
tween the sgACC and the precuneus is 
negatively correlated with clinical 
response

Stronger DLPFC-sgACC connectivity was 
associated with symptom improvement. 
Long-term responders showed higher 
connectivity between sgACC and frontal 
pole, superior parietal lobule, and 
occipital cortex and between the left 
DLPFC and the central opercular cortex

Biotypes could not be replicated

Positive Finding

Thinner cortex in the rostral part 
of the ACC at baseline was asso-
ciated with better clinical response

DLPFC sites with higher clinical 
efficacy showed higher anti-
correlations with the sgACC

Better clinical response was related to 
higher anti-correlations between 
the stimulation site in the DLPFC 
and the sgACC

Better clinical response was related to 
higher anti-correlations between the stim-
ulation site in the DLPFC and the sgACC

Better clinical response was related to 
higher anti-correlations between the stim-
ulation site in the DLPFC and the sgACC

Better clinical response was related to 
higher anti-correlations between the stim-
ulation site in the DLPFC and the sgACC

Clinical response was related to higher 
anti-correlations between the stimula-
tion site in the DLPFC and the sgACC

Circuits derived from lesions, rTMS, 
and DBS stimulation sites are similar 
and connectivity to this circuit predicts 
efficacy of rTMS treatment

Closer proximity between actual and 
emotional network-specific TMS targets 
is associated with better clinical outcome

Four distinct biotypes, characterised by 
dysfunctional connectivity in limbic and 
frontostriatal networks predicted clinical 
response to dmPFC rTMS

Strength
of finding

r N.S., p<.001

r = 0.51, p = .02

r = –0.355, p<.05

ANOVA F-value = 3.62

Peak z-score 3.6

r = –0.55, p < .005

r = –0.52, p < .05

p<.01

r = –0.61, p=.001

r = –0.54, p = .002

AUC = 0.87, p<.001, 
r = –0.62, p<.001
AUC = 0.79, p<.001, 
r = –0.49, p=.001

p = .021, T = 6.75

Effect size: .26 – .30 
depending on area cluster 
(for long-term responders
vs non-responders)

r = –0.6, p < .005

r = –0.16, p=.006

Weighted mean 
r = 0.22, p < .001

r = –0.41, p = .018

   2 = 25.7, p<.001

ns

Outcome 
measure

BDI/HDRS-24

HDRS-17

MADRS

HDRS-17

HDRS-17

BDI

MADRS

HDRS-17

MADRS

MADRS

HDRS-17

MADRS

MADRS

BDI

QIDS-SR

BDI/MADRS/
HDRS-24

MADRS

HDRS-17

IDS

rTMS protocol

10 Hz rTMS

Accelerated iTBS

10 Hz rTMS

Accelerated 
10 Hz rTMS

10 Hz rTMS 
(dmPFC) 

10 Hz rTMS or 
20 Hz rTMS
10 Hz rTMS

Accelerated iTBS

10 Hz rTMS

10 Hz rTMS

10 Hz rTMS 
or iTBS

iTBS

10 Hz rTMS

10 Hz rTMS

10 Hz rTMS 
or iTBS

10 Hz 
or 20 Hz rTMS

10 Hz rTMS

10 Hz or iTBS 
(dmPFC)

Not applicable

Total N 
(Group N)

48 (48)

50 (21)

149 (27)

20 (12)

 

25 (25)

25 (25)

16 (12)

50 (44)

47 (24)

26 (26)

50 (50)

50 (32)*

30 (20)

70 (61 long-
term, 63 
short-term)

 

25 (25)

414 (295)

713 (151)

26 (26)

1188 (154)

187 (187)

Study

Boes, 2018

Baeken, 2021

Fox, 2012

Baeken, 2014

Salomons, 2014

Weigand, 2017

Baeken, 2017

Cash, 2019

Cash, 2020

Ge, 2020

Persson, 2020

Hopman, 2021

Siddiqi, 2021

Elbau, 2023

Siddiqi, 2021

Cash, 2023

Drysdale, 2017

Dinga et al. 2019

Biomarker
Category

Cortical thickness

DLPFC-sgACC functional connectivity

Network Mapping

Machine Learning

* 12-week Follow up
Group N denotes the treatment group tested for effect
ns = not significant;  N.S= not specified;  IDS = inventory of depressive symptomatology

Sample size ≥88
Replication studies, sample size potentially <88
Robust biomarker found
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Study

Arns, 2012

Krepel, 2018

Widge, 2013

Arns, 2014

Corlier, 2019

Roelofs, 2021

Erguzel, 2014

Erguzel, 2016

Wu, 2020

Meijs, 2022

Zhang, 2020

Bailey, 2019

Bailey, 2021

Bares, 2015

Hunter, 2018

Hasanzadeh, 
2021

Li, 2016

Li, 2021

Total N 
(Group N)

90 (90)

106 (106)

180 (86)

90 (90)

147 (68)

153 (59)

147 (147)

147 (147)

177 (152)

193 (95)

179 (179)

71 (42)

193 (193)

50 (25)

18 (18)

46 (46)

36 (24)

105 (70)

rTMS protocol

10 Hz or 1 Hz

10 Hz or 1 Hz

10 Hz

10 Hz or 1 Hz

10 Hz, 5 Hz or 
sequential bilateral 
(10 Hz and 1 Hz)

10 Hz or 1 Hz

25 Hz

25 Hz

10 Hz or 1 Hz

10 Hz or 1 Hz

10 Hz or 1 Hz

10 Hz initially; later 
unilateral 10 Hz or 
1 Hz or sequential 
bilateral

10 Hz or 1 Hz or 
sequential bilateral

1 Hz

10 Hz (with potential 
switch to bilateral 
after session 10)

10 Hz initially; last 6 
sessions unilateral 
10 Hz or 1 Hz or 
sequential bilateral

10 Hz

10 Hz or iTBS

Outcome 
measure

BDI

BDI

HDRS-17

BDI

IDS-30 SR 
(response ≥40%)

BDI

HDRS-17

HDRS-17

DASS

BDI

BDI

HDRS-17

BDI

MADRS

IDS-SR, CGI-I

BDI, HRSD

HDRS-17

HDRS-17

Strength of 
finding

.814

ns

ns

.697 (for alpha), 

.793 (for iAF)

r = –0.305 (adj p = .045)

r = –0.250 (p = .028)

.904 (using 
genetic algorithm)

.807 - .918

 

rTMS: p = .004; effect 
size N.S. 
Sertraline: AUC = 0.67 
(taken from Nilsonne 
and Harrell, 2020)

.719 (model with 
baseline BDI and age)

ns

Balanced accuracy: 86.6%

ns (Cohen’s d = 0.25241) 

.82

Baseline ns (p = .15)

Accuracy: 91.3% beta, 
76.1% cordance

.799

.800 (for 10 Hz), 

.549 (for iTBS)

Positive Finding

Non-response characterised by in-
creased fronto-central theta, slower 
iAF, larger P300 amplitude in re-
sponse to high-pitched targets of 
auditory oddball task, decreased 
prefrontal delta and beta cordance

Decrease in Lempel-Ziv complexity 
(LZC) from minute 1 to minute 2 in non-
responders, increase in responders and 
controls; predictive accuracy improved 
when LZC was calculated on iAF range

A higher iAF and lower iAF distance to 
10 Hz were significantly correlated with 
symptom improvement to 10 Hz but not 
to 5 Hz or bilateral rTMS

Significant negative correlation between 
distance of iAF to 10 Hz and BDI percent 
change for 10 Hz but not 1 Hz rTMS

ML algorithm based on delta and theta 
cordance can classify responders and 
nonresponders with high accuracy

Erguzel, 2014 was replicated in same 
sample but with added external validation 
and assessing different classifiers

Values of SELSER algorithm below median 
predict better outcome to 1 Hz rTMS in 
anxiety subscale of DASS

PRS-informed fICA EEG component, reflect-
ing delta and theta power in left DLPFC, in-
versely correlated with delta power in right 
anterior PFC, distinguishes response/non-
response

Responders showed higher theta connec-
tivity (averaged across EO and EC) than con-
trols; ML model based on 54 alpha and 
theta power, connectivity, iAF and theta cor-
dance features can classify responders/non-
responders with high accuracy

Baseline cordance and decrease in cordance 
after week 1 of treatment predictive of 
response

Responders showed significant increase of 
frontal theta after RECT

Replication of Li, 2016: post-RECT frontal 
theta predictive of 10 Hz rTMS response 
but not of response to iTBS

Alternative Finding

Non-replication of Arns, 2012

All variables were non-significant
(non-replication of iAF)

Identified subtypes based on beta func-
tional connectivity could not distinguish 
response/nonresponse for rTMS

Non-replication of Bailey, 2019: no 
difference between responders/non-
responders in all measured variables

Central cordance change at week-1 
but not at baseline was significantly 
associated with treatment outcome

Cordance features were not significantly 
different between responders/non-
responders

Biomarker
Category

Theta power & iAF

iAF

ML & theta
cordance

ML & source
reconstruction

EEG functional 
connectivity

Theta cordance

Frontal-midline theta

Group N denotes the treatment group tested for effect
ns = not significant
N.S= not specified

Sample size ≥88
Replication studies, sample size potentially <88
Robust biomarker found
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Figure 2.3. (page 37) Overview of study details of included electroencephalography (EEG) 
studies based on sample size (N ≥ 88; highlighted in green) or on replication work (highlight-
ed in blue). Strength of finding reports the area under the receiver operating characteristic 
curve (AUC), effect size, correlation coefficient, or another measure of effect size, depending 
on what was reported in the article. Total N refers to the full sample size used to compute 
the biomarker while group N is the sample size of the group in which the biomarker was 
tested for repetitive transcranial magnetic stimulation (rTMS).

BDI, Beck Depression Inventory; CGI-I, Clinical Global Impressions Scale (Improvement); 
DASS, Depression Anxiety Stress Scale; DLPFC, dorsolateral prefrontal cortex; EO, eyes 
open; EC, eyes closed; fICA, functional independent component analysis; HDRS, Hamilton 
Depression Rating Scale; iAF, individual alpha peak frequency; IDS(SR), Inventory of De-
pressive Symptomatology (self-rated); iTBS, intermittent theta burst stimulation; MADRS, 
Montgomery–Åsberg Depression Rating Scale; ML, machine learning; PRS, polygenic risk 
score; RECT, rostral anterior cingulate cortex engaging cognitive task; rTMS, repetitive 
transcranial magnetic stimulation; SELSER, sparse EEG latent space regression.

EEG BIOMARKERS

EEG frequency band power: Theta power
EEG biomarker studies have traditionally focused on frequency band 
power (e.g. theta or alpha), however few sufficiently powered biomark-
ers have been found and replicated for NIBS. 

An early study by Arns et al. (Arns, Drinkenburg, Fitzgerald, et al., 
2012) in 90 MDD patients reported that high frontocentral theta pow-
er, low prefrontal delta and beta cordance and high P300 amplitude 
at baseline were associated with non-response to 10 Hz rTMS over 
DLPFC. However, in a replication attempt the findings for theta and 
P300 could not be replicated by the same group (Krepel et al., 2018). 

Frontal-midline theta power and change in frontal theta power, 
measured after a rostral ACC-engaging cognitive task demonstrated 
predictive potential in a small pilot study (Li et al., 2016). The find-
ings were replicated in an independent sample and moreover it was 
shown that the obtained predictor was specific to 10 Hz rTMS since 
it could not predict response to iTBS treatment (Li et al., 2021). In 
both studies, response was evaluated after 10 treatment sessions - a 
low number to assess clinical improvement. The final sample size 
was small (N=24 in the pilot and N=35 per treatment arm in the rep-
lication), however, the concept of independent-sample replication 
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strengthens the findings, and the differential prediction for iTBS vs 
10 Hz rTMS suggests potential for future treatment stratification.

EEG ML and source reconstruction
Wu et al. reported on ML applied to the alpha band, where response 
to sertraline – but not placebo – could be specifically predicted in the 
EMBARC dataset (Wu et al., 2020). When this alpha-signature of re-
sponse to rTMS was prospectively tested, it predicted change on the 
anxiety subscale of the DASS (Depression, Anxiety and Stress Scale) 
after 1 Hz rTMS treatment. Notably, the predictive effect was specific 
to 1 Hz treatment (and not 10 Hz), and opposite that of sertraline, 
offering potential for stratification. However, since no effects for 
depressive symptoms were reported (neither BDI nor DASS-depres-
sion), this analysis cannot be considered a true out-of-sample valida-
tion. Moreover, when another group inferred the data points report-
ed for the sertraline finding, and calculated the ROC curve, model 
performance was rather weak with an AUC= 0.67 (for a detailed cri-
tique about the methodology, see (Nilsonne & Harrell, 2020)).

A novel approach which conceptually resembles the previously men-
tioned rs-fMRI biotype analyses, applied independent component 
analysis to source-reconstructed EEG frequency band data. An EEG 
signature was identified that was associated with the polygenic risk 
scores for antidepressant response (Meijs et al., 2022). Subsequent ap-
plication of this signature to new samples yielded an association with 
response to both antidepressants and rTMS in men, but not women. 
As selecting EEG biomarkers using genetic data is a novel technique, 
this study should rather be viewed as a proof-of-concept that could 
aid in future biomarker development but requires further replication 
and comparison of the obtained networks with other known rs-fMRI 
or EEG networks.

Individual alpha peak frequency
One of the most heritable and reproducible aspects of the EEG is the 
individual alpha peak frequency (iAF) - the exact frequency of the 
alpha oscillations (Van Beijsterveldt & van Baal, 2002; Posthuma et 
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al., 2001; Smit et al., 2005). Initial findings for iAF were mixed. Some 
studies reported an association between slow alpha and non-re-
sponse to DLPFC rTMS (Arns et al., 2010; Arns, Drinkenburg, Fitz-
gerald, et al., 2012) which could not be replicated by the same group 
(Krepel et al., 2018) or by Widge et al. (Widge et al., 2013). Adding 
iAF to a predictive model of non-linear EEG features of the alpha 
band, on the other hand, improved model prediction albeit in a rath-
er small group of non-responders (N=20)(Arns, Cerquera, et al., 2014).
More recent work shed light on these contradictory results by show-
ing a predictive effect of iAF that was specific to 10 Hz rTMS treat-
ment outcome (with no such effect for 1 Hz R-DLPFC rTMS) and 
could only be found using an average reference (indexing more focal 
activity than the linked-ears montage used in the studies mentioned 
above) (Roelofs et al., 2020). Furthermore, the association between 
iAF and symptom improvement turned out to be a quadratic in-
stead of the previously assumed linear effect, demonstrating that 
the distance of iAF to 10 Hz was negatively correlated with symptom 
improvement after 10 Hz rTMS (Corlier et al., 2019). These results 
were successfully replicated (Roelofs et al., 2020) in the same sample 
by Krepel et al. (Krepel et al., 2018), where previous findings (using 
linked ears reference) could initially not be replicated. This empha-
sizes the importance of exact methodological replications and a uni-
form way to preprocess and analyze EEG data.
 

EEG Cordance
A study investigating prefrontal theta cordance, originally developed 
by Leuchter et al (Leuchter et al., 1994) found that baseline cordance 
could predict response to 1 Hz rTMS with high accuracy (Bares et al., 
2015) although this could not be replicated in another study where 
only 1-week change in theta cordance at central electrode sites pre-
dicted differences in response but not baseline or prefrontal cordance 
(Hunter et al., 2017). 

Two ML studies investigated pretreatment frontal cordance to pre-
dict outcome to 25Hz rTMS in the same dataset of 147 subjects, us-
ing artificial neural networks (Erguzel et al., 2014; Erguzel & Tarhan, 
2016). High classification accuracies were obtained, albeit in the first 
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study only a 6-fold cross validation was conducted but models were 
not tested in an external validation set which is considered neces-
sary to prevent over-fitting (Ho et al., 2020). The second study in 
2016 included a separate sample of 36 subjects for external valida-
tion, achieving high accuracy (AUC=.807-918). However, another 
ML study that used minimal-redundancy-maximal-relevance fea-
ture selection to test response prediction with frontal and prefron-
tal baseline cordance found no differences between responders and 
non-responders (Hasanzadeh et al., 2019). Thus, no conclusions can 
be drawn about the predictive value of baseline cordance. 
 

EEG functional connectivity
Zhang et al. used ML to identify differences in beta connectivity in 
frontal and posterior regions during eyes-open recordings which 
could distinguish two clinical subtypes that responded differentially 
to psychotherapy in posttraumatic stress disorder and SSRI treat-
ment in MDD (Zhang et al., 2020). However, no such differences 
between subtypes were found for rTMS, suggesting little relevance 
for rTMS prediction, but possible relevance for stratification between 
SSRI and rTMS treatment. Another ML model, built on 54 EEG fea-
tures, such as baseline and week-1 alpha and theta connectivity (and 
other features such as power, iAF and cordance), demonstrated high 
predictive accuracy of response (86.6%) (Bailey et al., 2019), which 
could not be replicated in an independent sample (Bailey et al., 2021). 
The discovery analysis was based on only 12 responders compared to 
128 responders in the replication sample. One important caveat of 
the replication analysis was the strong differences in EEG processing 
that can lead to different results (Roelofs et al., 2020). 

Findings regarding FC are, thus, inconclusive with different process-
ing and modelling approaches hampering robust findings. 

Figure 2.4. (Following page) Glossary of terms used throughout the article. 3D, 3-dimension-
al; DLPFC, dorsolateral prefrontal cortex; EEG, electroencephalography; FC, functional con-
nectivity; MRI, magnetic resonance imaging; rs-fMRI, resting-state functional MRI; sgACC, 
subgenual anterior cingulate cortex; TMS, transcranial magnetic stimulation.



42

A normative functional connectome is an averaged 
connectivity map derived from rs-fMRI scans from many 
individuals, also called functional group connectome or 
human connectome. This connectome represents the average 

wiring diagram of the brain’s functional connections. The advantage of a normative 
functional connectome is that the signal-to-noise ratio is higher compared to 
individual rs-fMRI data. However, inter-individual differences in functional connectiv-
ity are discarded.

TMS-induced electric field simulations can provide insight in the 
distribution of the TMS effects within the brain. When a TMS pulse is 
applied to the brain, a secondary electric field is induced in the 
superficial layers of the cortex. The exact distribution of this 
TMS-induced electric field depends on the shape of the TMS coil 
used as well as on the individual’s gyral folding pattern.

The weighted seedmap method, introduced by Cash et al (1), is an 
alternative method to compute the time-series in the sgACC 
combining knowledge from the normative functional connectome with 
the individual rs-fMRI data. According to the weighted seedmap approach the 
time-series of the sgACC is computed as the weighted spatial average of the 
time-series in the gray matter voxels of the individual rs-fMRI data, excluding the 
DLPFC region. The weights are derived from the connectivity strength between the 
sgACC and the gray matter voxels in the normative functional connectome.

Global signal is the mean of the voxel time-series within the brain. Particularly in the 
work of Elbau et al. (2), the global signal is relevant since it was shown to reflect burst 
breathing patterns. Especially the subset of patients showing global signal patterns 
related to burst breathing showed strong negative correlations between sgACC-stim-
site FC and clinical response.

Network mapping is an analysis technique that does not solely consider focal brain 
regions but is also sensitive to networks connected to those regions. At first, network 
mapping used lesions to seek convergence for symptoms caused by lesions in 
different non-overlapping brain regions (3). Network mapping has since been 
expanded to contain other (causal) sources of information such as TMS stimulation 
sites (TMS network mapping) (4) or coordinates related to abnormal brain function-
ing (coordinate network mapping) (5).

The emotional network, identified by Cash et al. (5), involves the 
subgenual cingulate cortex, pregenual anterior cingulate cortex, left 

DLPFC, cingulum, and superior frontal gyrus including the 
pre-supplementary motor area.

The depression network, derived by Siddiqi et al. (8), contains 
positive peaks in the DLPFC, frontal eye fields, inferior frontal 

gyrus, intraparietal sulcus and extrastriate visual cortex and 
negative peaks in the subgenual cingulate cortex and ventromedial 

prefrontal cortex. .

Canonical correlation analysis (CCA) is a well-established method used to 
identify the association between two sets of variables. Drysdale et al. (6) used CCA to 
select a low-dimensional representation of FC features that were related to weighted 
combinations of clinical symptoms. Regularized CCA is based on a subset of
features. This prevents overfitting of CCA as might be the case in nonregularized 
CCA.

Frequency band power is most commonly calculated for 
the 5 standard frequency bands delta (1-4 Hz), theta (4-8 Hz),
alpha (8-13 Hz), beta (13-30 Hz) and gamma (30-100 Hz) 
although the frequency ranges are not standardized and 

often differ between studies. The power spectrum within a frequency band is usually 
calculated by Fast-Fourier Transform (FFT), an algorithm that transforms a signal from 
a time or space domain to a frequency domain.

The P300 is an event-related potential (ERP), which can be observed 
in the EEG in response to an infrequent tone in a row of frequent 
tones. It denotes a positive deflection approximately 300ms 
following the stimulus and is assumed to be involved in attention 
and memory processes.

Independent component analysis (ICA) is a computational 
method to filter a multivariate signal into its distinct subcomponents.
ICA was here applied to data which had been source reconstructed with 
LORETA (Low Resolution Brain Electromagnetic Tomography), an EEG 
method for 3D imaging brain activity to estimate where signals come from in the 
brain.

Polygenic risk scores (PRS) estimate a person’s genetic predisposition to develop 
certain traits or disorders, based on their genetic profile and genome-wide 
association study data.

The individual alpha peak frequency (iAF) is the frequency at which an individual’s 
alpha oscillations are most pronounced. It is calculated by determining the power 
spectrum within the alpha frequency band (see above) and identifying the highest 
(modal) peak in that spectrum.

Brainmarker-I is an iAF-based biomarker which has been age- and sex-normalized 
on a large dataset (>4000 individuals) by employing the biological ground 

truth that the iAF matures (speeds up) during childhood and 
adolescence (7).

Cordance is an EEG measure, originally developed by Leuchter 
and colleagues (8) that combines both absolute and relative 
power within a specific frequency band, with negative values 
reflecting increased slow-wave and decreased fast activity. This 

pattern was termed discordance and is assumed to reflect low 
perfusion and metabolism.

Cross validation is a statistical method used in machine learning to 
evaluate model performance. Ideally, an external validation dataset is used to 

test model predictions. Often, cross validation is done on a segment basis, meaning 
all data segments from all participants are merged and some segments are kept for 
later validation. This can lead to high prediction accuracy, so-called overfitting, since 
the model is predicting the participant instead of the signal.

1. Cash RFH, Cocchi L, Lv J, Wu Y, Fitzgerald PB, Zalesky A (2021): Personalized connectivity‐guided DLPFC‐TMS for depression: Advancing computational feasibility, precision and reproducibility.
Hum Brain Mapp 42: 4155–4172.

2. Elbau IG, Lynch CJ, Downar J, Vila-Rodriguez F, Power JD, Solomonov N, et al. (2023): Functional Connectivity Mapping for rTMS Target Selection in Depression. Am J Psychiat 180: 230–240.
3. Boes AD, Prasad S, Liu H, Liu Q, Pascual-Leone A, Caviness VS, Fox MD (2015): Network localization of neurological symptoms from focal brain lesions. Brain 138: 3061–3075.
4. Siddiqi SH, Schaper FLWVJ, Horn A, Hsu J, Padmanabhan JL, Brodtmann A, et al. (2021): Brain stimulation and brain lesions converge on common causal circuits in neuropsychiatric disease.

Nat Hum Behav 1–10.
5. Cash RFH, Müller VI, Fitzgerald PB, Eickhoff SB, Zalesky A (2023): Altered brain activity in unipolar depression unveiled using connectomics. Nat Mental Health 174–185.
6. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. (2017): Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23: 28–38.
7. Voetterl H, Wingen G van, Michelini G, Griffiths KR, Gordon E, DeBeus R, et al. (2022): Brainmarker-I differentially predicts remission to various attention-deficit/hyperactivity disorder treatments: 

a blinded discovery, transfer and validation study. Biological Psychiatry Cognitive Neurosci Neuroimaging. https://doi.org/10.1016/j.bpsc.2022.02.007
8. Leuchter AF, Cook IA, Lufkin RB, Dunkin J, Newton TF, Cummings JL, et al. (1994): Cordance: A New Method for Assessment of Cerebral Perfusion and Metabolism Using Quantitative Electroencepha-

lography. Neuroimage 1: 208–219.
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DISCUSSION

The aim of this systematic review was to assess the progress regard-
ing EEG- and MRI-biomarkers for NIBS techniques. To improve 
upon previous criticisms, particularly the lack of replications as high-
lighted by Widge et al. (Widge et al., 2019), we focused on robustness 
in this review. To achieve this, we included only studies with a sam-
ple size of N ≥ 88 or those that attempted to replicate biomarkers in 
independent samples, in order to identify robust biomarkers that can 
be used clinically to predict response to NIBS techniques.

Eighteen MRI and 18 EEG biomarker studies were included (visu-
alized in figure 2.1). All studies focused on rTMS while no relevant 
imaging biomarker studies were found for TES. 

MRI BIOMARKERS

The most robust rs-fMRI based metric predicting clinical response 
supported by a large sample (N=295) (Elbau et al., 2023) as well as 
several independent replications, is the anti-correlation between 
the stimulation target (within the left DLPFC) and sgACC (Fox et 
al., 2012). This anti-correlation was shown to be related to response 
to various rTMS protocols, such as iTBS and 10 Hz rTMS. However, 
replication in the largest sample yielded only weak effects (Elbau et 
al., 2023), potentially suggesting reduced utility in clinical practice. 
Thus, prospective studies targeting the personalized location in the 
DLPFC with the highest anti-correlation with the sgACC should 
demonstrate if this connection has true biomarker potential.

A newer method based on network mapping also demonstrated bio-
marker potential of the connection between the stimulation site and 
a general depression network or an emotional network. Even though 
these findings are based on a large study using data from 151 rTMS 
stimulation sites (four merged rTMS datasets) (Siddiqi, Schaper, et 
al., 2021) and was independently replicated (Cash et al., 2023), more 
and prospective research is warranted to demonstrate clinical value.
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EEG BIOMARKERS

For EEG biomarkers, frontal-midline-elicited theta power after an 
rACC-activating task and iAF emerged as the most promising and 
robust EEG biomarkers. Frontal-midline theta power has been ex-
tensively described in the literature as a biomarker for treatment 
prediction and is thought to reflect rACC theta (for review see Pizza-
galli (Pizzagalli, 2011)), supported by the finding that an rACC-engag-
ing task can elicit this frequency (Li et al., 2016, 2021). Interestingly, 
rACC activation was found to be predictive across imaging modal-
ities, including EEG and fMRI (Pizzagalli, 2011). However, this was 
true for both sertraline and placebo response (Pizzagalli et al., 2018). 
Thus, despite successful replication, future studies should further 
investigate whether this finding is specific to 10 Hz rTMS vs. iTBS 
or should rather be considered a non-specific predictor of response, 
including placebo.

The iAF finding emerged from two well-powered studies (N=143; 
N=153) by two independent groups. Interestingly, this result was spe-
cific to 10 Hz rTMS (proximity of iAF to 10 Hz was associated with 
better clinical response, suggesting synchronization effects of rTMS 
to the endogenous iAF rhythm). Recent work has indicated promise 
for the iAF-based Brainmarker-I to stratify between 10 Hz left DLPFC 
and 1 Hz right DLPFC rTMS to enhance clinical outcomes (54), pro-
viding additional clinical merit for this biomarker.

LESSONS LEARNED: THE DEVIL IS IN THE DETAILS

There are many methods to derive seed regions and compute pre-
frontal-sgACC FC. Even though earlier work used circles or weighted 
cone models to derive seed region time-series, currently more ad-
vanced methods such as individual TMS-induced electric field sim-
ulations and weighted seedmap methods are used. These method-
ological details have shown to be highly influential since Elbau et 
al. (Elbau et al., 2023) only found a relation between the FC between 
stimulation site and sgACC and clinical response when the stimu-
lated area was derived from the simulated electric field distribution 
and the sgACC time-series were derived using a seedmap approach. 
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Four of the papers included in this review demonstrate clinical val-
ue of using individual rs-fMRI data compared to group connectome 
data (Cash, Weigand, et al., 2021; Cash et al., 2023; Elbau et al., 2023; 
Siddiqi, Weigand, et al., 2021). Future research needs to compare bio-
markers derived from these different connectomes and answer the 
question whether baseline individualized rs-fMRI data collection 
should be added to treatment protocols. 

In the case of the iAF measured with EEG, initial findings were 
mixed, even though several well-powered studies were used to ex-
amine the effect (e.g. N=180 (Widge et al., 2013) or N=90-106 (Arns, 
Drinkenburg, Fitzgerald, et al., 2012; Krepel et al., 2018), and replica-
tion analyses were conducted. Later work actually led to consistent 
and robust findings (Corlier et al., 2019; Roelofs et al., 2020), show-
ing that the crucial factors were: 1) Use of the correct EEG montage: 
initial studies used the less focal linked-ears reference, while Roelofs 
(Roelofs et al., 2020) demonstrated that the main result critically de-
pended on the average reference montage; 2) protocol-specific effects 
for 10 Hz TMS and no such effect for 1 Hz TMS, meaning effects 
could average out when combined, and 3) a quadratic association 
between TMS response and iAF as opposed to the presumed linear 
association (i.e. lower iAF predicts worse TMS response). 

The actual predictive value of clinical response of these MRI- and 
EEG-derived metrics, thus, depends on the preprocessing pipelines 
used. Future research is necessary to investigate if the content of 
these metrics is related to core brain mechanisms or reflect other 
sources of signal fluctuations such as respiration or cardiac patterns. 

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

The present review reveals a limited biomarker potential for AI and 
ML-techniques in both EEG and rs-fMRI studies.

Although large – and often multiple - samples were used and results 
seemed promising at first glance, some studies lacked external valida-
tion samples (Erguzel et al., 2014) which are needed to prevent over-
fitting (Ho et al., 2020); some out-of-sample validation results were 
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only significant for different measures than the discovery measure 
(e.g. anxiety instead of depression) (Wu et al., 2020); and some could 
not be replicated, possibly due to overfitting (Bailey et al., 2021). Fi-
nally, it is important to use consistent definitions for response and 
remission (e.g. not ‘partial response’), in order to keep outcomes 
comparable.

FUTURE DIRECTIONS

It remains to be investigated whether the biomarkers described in 
this review generalize to multiple rTMS protocols. If not, this might 
at least partly explain some of the unsuccessful replication attempts. 
Moreover, especially for biomarkers with weaker effects, the cost/
benefit ratio needs to be assessed. 
The present manuscript only discusses robust biomarkers for MDD. 
Future research is needed to determine if these are also predictive of 
treatment response in other disorders.

Finally, prospective studies, similar to van der Vinne et al (van der 
Vinne et al., 2021), will be necessary to test treatment individualiza-
tion in daily clinical practice.

CONCLUSION

This systematic review has identified four robust neuroimaging bio-
markers that have reached a sufficient level for testing in prospective 
trials to evaluate their feasibility and clinical actionability. Some of 
those biomarkers show promise for treatment stratification which 
might be a more realistic and feasible approach for clinical practice 
compared to precision psychiatry (Arns et al., 2022).

Overall, a limited number of studies met our inclusion criteria, high-
lighting the need for improvements in the quality of imaging bio-
marker research for rTMS. Nevertheless, the identification of four 
robust biomarkers over the past decade presents a promising outlook 
and justifies large trials, similar to iSPOT-D and EMBARC for antide-
pressant medication, but then aimed at rTMS and NIBS.
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SUPPLEMENTARY MATERIAL

Supplementary material S2.1. Search Strategy and Article Selection

For EMBARC, no power calculation was performed and N=121 pa-
tients were treated with sertraline (1). For iSPOT-D, a rather strict 
power calculation was conducted powered on an odds ratio=1.3 with 
N=217, N=234 and N=204 treated with escitalopram, sertraline and 
venlafaxine, respectively (2). For CAN-BIND, a sample size of 98 per 
group (response/non-response) was estimated (3). 

We conducted a PubMed search for articles published before 17th of 
March 2023 whose title/abstract contained keywords, in line with 
Widge, 2019, matching the following query:

(electroencephalogram OR electroencephalography OR EEG OR QEEG 
OR resting-state OR event-related potential OR ERP OR coherence OR 
spectral OR spectrum OR alpha OR beta OR theta OR delta OR gam-
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ma OR N1 OR P2 OR P300 OR N200 OR SSVEP OR VEP OR AEP OR 
evoked potential OR oscillation OR electrical activity)

OR

(MRI OR magnetic resonance imaging OR connectivity OR function-
al connectivity OR FC OR resting-state OR connections OR structur-
al connectivity OR diffusion OR perfusion OR network mapping OR 
graph measures)

AND 

(depression OR depressive OR major depression OR major depressive 
disorder OR major depressive episode OR depressed OR antidepres-
sant OR mood disorder)

AND

(differential OR predictor OR prediction OR predict OR predict-
ed[Title/Abstract] OR predictive[Title/Abstract] OR biomarker OR 
marker OR phenotype OR response index OR subtype)

AND

(response OR respond[Title/Abstract] OR responds[Title/Abstract] 
OR responded[Title/Abstract] OR remission OR remit[Title/Abstract] 
OR remits[Title/Abstract] OR remitted[Title/Abstract] OR treatment 
response OR responsiveness OR nonresponse OR non-response OR 
responder OR non-responder OR remitter OR non-remitter OR 
therapeutic OR outcome OR treatment resistance OR comparative 
effectiveness OR effectiveness OR treatment selection OR efficacy)

AND

(rTMS OR transcranial magnetic stimulation OR iTBS OR theta 
burst stimulation OR non-invasive brain stimulation OR noninvasive 
brain stimulation OR NIBS OR tES OR transcranial electric stimula-
tion OR tDCS OR transcranial direct current stimulation)
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In addition, articles referenced in recent relevant reviews and rele-
vant articles known to one of the authors were included. 
Articles in a language other than English, non-human studies and 
unpublished data were excluded first.
All abstracts that appeared to involve EEG or MRI, treatment predic-
tion, (non-psychotic) depressive illness and rTMS or tECS treatment 
were retained for further review. 
We only included original research, and no articles published as book 
chapters. 
We excluded articles which did not attempt to predict treatment 
response in depression or which used alternative methods for pre-
diction or predicted treatment outcome for a treatment other than 
noninvasive brain stimulation. 
Lastly, we only included adequately powered studies (N≥88) or stud-
ies that had been replicated in an independent sample. Unsuccessful 
replications were also included.
This protocol was not pre-registered.
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Figure S2.1. Full flow-diagram study inclusion
Flow-diagram of total studies identified, excluded and included in the systematic review for 
EEG-biomarkers (left) and MRI-biomarkers (right).
Records were excluded on basis of the abstract if they turned out to be non-human studies, 
no original research, pertain to another pathology than MDD, or another biomarker than 
EEG/MRI, or another treatment than NIBS.
Prespecified exclusion criteria were: 1. Treatment-emergent biomarker, and 2. Sample size 
<88 and no replication (EEG= electroencephalography; MRI=magnetic resonance imaging; 
rTMS= repetitive transcranial magnetic stimulation)
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ABSTRACT

Background: Attention-deficit/hyperactivity disorder is 
characterized by neurobiological heterogeneity, possi-
bly explaining why not all patients benefit from a giv-

en treatment. As a means to select the right treatment (strat-
ification), biomarkers may aid in personalizing treatment 
prescription, thereby increasing remission rates. Introduction 

Methods: The biomarker in this study was developed in a heteroge-
neous clinical sample (N=4249), and first applied to two large transfer 
datasets, a priori stratifying young males (<18 years) with a higher 
individual alpha peak frequency (iAPF) to methylphenidate (N=336) 
and those with a lower iAPF to multimodal Neurofeedback, comple-
mented with sleep coaching (N=136). Blinded, out-of-sample valida-
tions were conducted in two independent samples. In addition, the 
association between iAPF and response to Guanfacine and Atomox-
etine was explored. 

Results: Retrospective stratification in the transfer datasets resulted 
in a predicted gain in normalized remission of 17-30%. Blinded out-
of-sample validations for methylphenidate (N=41) and multimodal 
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Neurofeedback (N=71) corroborated these findings, yielding a pre-
dicted gain in stratified normalized remission of 36% and 29%, re-
spectively. 

Conclusion: The present study introduces a clinically interpretable 
and actionable biomarker based on the iAPF assessed during rest-
ing-state electroencephalography. Our findings suggest that ac-
knowledging neurobiological heterogeneity can inform stratification 
of patients to their individual best treatment and enhance remission 
rates.

BRAINMARKER-I DIFFERENTIALLY PREDICTS REMISSION 
TO VARIOUS ATTENTION-DEFICIT/HYPERACTIVITY  
DISORDER TREATMENTS: A DISCOVERY, TRANSFER,  
AND BLINDED VALIDATION STUDY. 
 
 
INTRODUCTION

Attention-deficit/hyperactivity-disorder (ADHD) is arguably the 
most common neurodevelopmental disorder and is characterized by 
highly heterogeneous impairment profiles and etiology (Banaschews-
ki et al., 2017; Luo et al., 2019). Due to this heterogeneity and differ-
ential modes of treatment action (e.g., psychostimulant vs non-stim-
ulant medication vs non-pharmacological treatments), even the most 
common interventions, although generally effective in the treatment 
of ADHD, only work in part of the ADHD population as shown by a 
large meta-analysis by Cortese et al (Cortese et al., 2018) on efficacy 
of various commonly prescribed ADHD medications (Cortese et al., 
2018; Molina et al., 2009), with real-life remission rates of 31-57%, (re-
flecting effectiveness of treatments in the clinical setting rather than 
treatment efficacy as assessed in RCT’s) (Pimenta et al., 2021). There-
fore, individualized treatment recommendation based on biomarkers 
that predict clinical response to specific therapeutic interventions is 
desirable, one example being specific activity patterns measured by 
electroencephalography (EEG) (Atkinson et al., 2001). 
Ideally, treatment should be individually adapted to a given patient 
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as envisioned in precision psychiatry. However, the multidimension-
ality of psychiatric disorders, in contrast to such clearly delineated 
problems as tumor-tissue, complicates tailoring treatment to a sin-
gle person (Olbrich et al., 2016). An implementable intermediate step 
is treatment stratification, which aims to select a treatment from a 
range of effective treatments for a given disorder, informed by a bio-
marker (for review see Arns et al. (Arns et al., 2022)). 

As an example, EEG biomarker studies for treatment prediction in 
major depressive disorder (MDD) have shown that specific EEG pat-
terns or abnormalities are differentially associated with drug-specif-
ic or drug-class specific antidepressant treatment effects, as well as 
rTMS outcome (Arns, Bruder, et al., 2016; Arns et al., 2017; Olbrich 
& Arns, 2013; Roelofs et al., 2020; Wu et al., 2020). Many such stud-
ies yielded sex-specific EEG predictors of MDD treatment response 
(Arns, Bruder, et al., 2016; Van Dinteren et al., 2015; Iseger et al., 
2017), as well as of methylphenidate (MPH) response in ADHD (Arns 
et al., 2018). Treatment stratification has already been implemented 
in the treatment of different cancer types (Deng et al., 2020; Kato & 
Manabe, 2018; Orr & McHugh, 2019) and recently also MDD, where 
stratification to different antidepressant medications was informed 
by pre-treatment EEG biomarkers, resulting in improved remission 
rates relative to treatment-as-usual (van der Vinne et al., 2021).

EEG is one of the most cost-effective and easily deployable methods 
to measure brain activity and is, thus, suitable for broad usage in clin-
ical practice. Although several EEG patterns have been proposed for 
predicting treatment success in different mental disorders (Keizer, 
2019; Olbrich et al., 2016), in ADHD most biomarker studies have 
focused on diagnostic biomarkers, while studies investigating prog-
nostic ADHD biomarkers are still scarce (Clark et al., 2004; Pahor & 
Jaušovec, 2016). 

The individual alpha peak frequency (iAPF) is the modal frequency 
at which an individual’s alpha activity oscillates and is known to in-
dex brain maturation (Lindsley, 1936; Smith, 1938). This EEG pattern 
has been extensively investigated and shows promise in predicting 
outcome to various treatments across different disorders (Arns, 2012; 
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Olbrich & Arns, 2013). A higher mean frequency or a faster alpha peak 
is often associated with better cognitive performance, possibly re-
flective of faster information processing in thalamocortical path-
ways (Clark et al., 2004; Grandy et al., 2013; Klimesch, 1999; Pahor & 
Jaušovec, 2016)  Conversely, many mental disorders such as Alzhei-
mer’s disease, mild cognitive impairment (Rodriguez et al., 1999), psy-
chosis/schizophrenia (Murphy & Öngür, 2019; Yeum & Kang, 2018) 
and ADHD (Bazanova et al., 2018) are characterized by a slowed iAPF, 
potentially reflective of reduced or slowed information flow between 
the thalamus and the cortex (Clark et al., 2004). Furthermore, slow 
iAPF has been associated with worse clinical outcome to different 
treatments such as psychostimulants in ADHD (Arns et al., 2008, 
2018) and antidepressant medication in MDD (Ulrich et al., 1984), 
whereas it was found to be related to better clinical outcome to mul-
timodal EEG neurofeedback (NFB) treatment in ADHD (Krepel et al., 
2020) and sertraline in MDD (Arns et al., 2017). 

The current study therefore investigated whether iAPF is able to 
differentially predict clinical outcome to two disparate ADHD treat-
ments, MPH and a multimodal behavioral intervention including 
NFB, sleep hygiene and coaching (MM-NFB). 

Given the opposite implications reported for these treatments, we 
hypothesized that iAPF can help subdivide a heterogeneous popu-
lation into more homogeneous subpopulations with relevance to 
clinical outcome and thus serve as a biomarker informing treatment 
stratification between medications (e.g. MPH) and MM-NFB. While 
there has been controversy regarding the specificity of EEG-NFB in 
the treatment of ADHD (Cortese et al., 2016; The Neurofeedback 
Collaborative Group et al., 2021), this manuscript focuses on EEG-
NFB as part of a broader multimodal treatment including sleep hy-
giene and coaching, for which remission rates of 32-57% have been 
reported (Pimenta et al., 2021) and lasting clinical benefit has been 
demonstrated (Doren et al., 2018; The Neurofeedback Collaborative 
Group et al., 2021), although this is likely not solely attributable to 
the EEG-NFB alone. Given the stratification approach investigated 
here, being able to prescribe MM-NFB to people for whom psycho-
stimulants are unlikely to work would nonetheless be advantageous. 
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Across the EEG literature, EEG (pre-) processing, EEG montages 
and frequency-band definitions vary considerably, which diminishes 
comparability and reproducibility that might at worst result in differ-
ent findings (Yao et al., 2019) (see supplement S3.1 for more details). 
We therefore first developed Brainmarker-1 in a Biomarker Discov-
ery Phase, where the most precise iAPF algorithm, i.e. the algorithm 
yielding the most biologically plausible iAPF, was determined. This 
algorithm was validated against a ground truth scenario, in this case 
relying on the well-established finding that iAPF indexes brain-mat-
uration (Lindsley, 1936; Smith, 1938). The resulting biomarker was 
subsequently used to predict treatment outcome in the previously 
mentioned MPH and MM-NFB datasets based on previous findings 
(Arns et al., 2018; Krepel et al., 2020). These predictions were then 
corroborated in blinded, out-of-sample validations in a MPH and a 
MM-NFB dataset, which – to our knowledge – had not been attempt-
ed in EEG-biomarker studies before. We, furthermore, tested the bio-
marker’s capacity to predict remission to two other pharmacological 
treatments, Guanfacine (GUAN) and Atomoxetine (ATX).

In order to maximize clinical utility of this stratification biomarker, 
we focused on remission as primary outcome, it representing the most 
clinically relevant measure (Steele et al., 2006; Swanson et al., 2001).

METHODS AND MATERIALS 
 

DATASETS – BIOMARKER DISCOVERY PHASE

Since the goal was to explain variance in clinical data, the large TD-
BRAIN+ dataset (see Table 3.1. for overview), comprising patients with 
various psychiatric disorders was utilized to determine the optimal pa-
rameters of iAPF calculation. The resulting optimized iAPF EEG pro-
cessing pipeline was used to develop an age-standardized biomarker 
for males and females separately in accordance with previous reports of 
sex differences (Arns, Bruder, et al., 2016; Hermens et al., 2005), which 
was subsequently divided into deciles, for enhanced interpretability. 
The open access TD-BRAIN dataset (N=1274), a subset of the data 
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used for the discovery phase, is freely available at www.brainclinics.
com/resources (van Dijk et al., 2022), with all data recorded at Re-
search Institute Brainclinics (Brainclinics Foundation, Nijmegen). 
In the TD-BRAIN+ dataset this was complemented with data from 
additional clinics (EPI-PIT clinics (Eindhoven & Tilburg; author JJ), 
EEG resource (Nijmegen; author RB), Neuroscan (Dordrecht; author 
PdJ), neuroCare clinics (Hengelo; Groningen; Munich; Sydney, au-
thor RvR)), for which the lab setup including EEG caps, amplifiers, 
instructions and other details were identical to the iSPOT-A trial 
(Arns et al., 2018). 

DATASETS - BIOMARKER TRANSFER PHASE

The biomarker determined in the discovery phase was utilized to find 
the best way to stratify patients to Methylphenidate (iSPOT-A: N=257 
(Arns et al., 2018)) and MM-NFB (N=50) (Krepel et al., 2020) accord-
ing to the previously demonstrated directionality of effects (Arns et 
al., 2018; Krepel et al., 2020). Neurofeedback protocols comprised 
standard protocols such as Sensory-Motor-Rhythm (SMR), Theta-Be-
ta-Ratio (TBR) and Slow Cortical Potential (SCP) neurofeedback.
This step focused on boys only, due to limited sample size of girls and 
no robust a priori knowledge regarding directionality of effect (e.g. 
Arns et al (Arns et al., 2018) only found effects for boys).

DATASETS - BIOMARKER VALIDATION PHASE

For independent out-of-sample replication analysis, we conducted a 
blinded prediction of remission in the MPH/GUAN dataset (Loo et 
al., 2016) (Table 3.1) and the International Collaborative ADHD Neu-
rofeedback (ICAN) study (The Neurofeedback Collaborative Group 
et al., 2021), with accuracy verified by a third person not involved in 
the EEG analysis.
In the former trial, subjects were blindly randomized to either MPH 
(N=58) or GUAN (N=55) treatment. In the ICAN study (N=96), sub-
jects were blindly randomized to a multimodal treatment of sleep 
and nutrition counselling and either theta/beta ratio NFB (MM-NFB) 
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or a control treatment (“NFB” administered based on a pre-recorded 
EEG to facilitate blinding of all). 
 

Table 3.1. Baseline demographics 
Full datasets sample size reflects N of people who were enrolled. Sample size included in 
analysis reflects N of people with complete baseline data who finished treatment (except for 
TD-BRAIN+, where only baseline data but no clinical data was used). In the TD-BRAIN+ 
dataset the full age range was used for age-standardization while an age range of 6-18 years 
was used for the correlation analyses. Sample size of this age range was 1715 (1253 male); 
mean age was 11.8 (SD: 3.1). MPH = Methylphenidate, MM-NFB = Multimodal Neurofeed-
back, GUAN = Guanfacine, ATX = Atomoxetine, SD = Standard Deviation, NA = not appli-
cable, since no treatment effects were assessed in the discovery dataset  
* NFB treatment augmented with advice on sleep hygiene & coaching

DATASETS - BIOMARKER EXPLORATION PHASE

In the exploratory phase to test performance of the biomarker to 
another commonly prescribed form of pharmacotherapy for ADHD 
(i.e., noradrenergic medications), the predictive value of the biomark-
er to ATX (n=47) and GUAN (n=55) was examined in the ACTION 
dataset (Griffiths et al., 2018) and in the MPH/GUAN dataset that 
had already been used in the validation phase for MPH replication 
(Loo et al., 2016). 

All participants (or their parents or care-takers) gave written in-
formed consent prior to testing.

Full Datasets

Sample size (N)
Age range, years

Included in 
analysis

Sample size (N)
Males (%)
Mean Age (SD), 
years
Treatment

iSPOT-A

336
6-18

184
184 (100)
11.8 (3.1)

MPH

NFB

136
6-68

41
41 (100)
11.1 (3.1)

NFB 
multimodal 
treatment*

ACTION

56
6-16

39
39 (100)
11.5 (2.5)

ATX

MPH/GUAN 
Dataset

141
7-15

76
76 (100)
10 (2.0)

MPH / GUAN

ICAN

142
7-11

71
71 (100)
8.6 (1.2)

NFB / 
multimodal 
treatment

TD-BRAIN+

4249
6-88

4126
2528 (60)
29.3 (18.3)

NA
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EEG DATA COLLECTION AND PREPROCESSING 

All EEGs were recorded in a standardized manner as developed by 
Brain Resource Ltd. (for more details see (Arns, Bruder, et al., 2016)) 
apart from the independent MPH/GUAN validation dataset (Loo et 
al., 2016).

In short, EEGs were recorded from 26 channels according to the 10-
20 electrode international system (FP1,FP2,F7,F3,Fz,F4,F8,FC3,FCz,F-
C4,T3,C3,Cz,C4,T4,CP3,CPz,CP4,T5,P3,Pz,P4,T6,O1,Oz,O2; Quikcap, 
NuAmps). Measurements consisted of 2-minute Eyes-Open (EO) and 
2-minute Eyes-Closed (EC) recordings. During EO recordings, par-
ticipants were asked to fixate a dot in the middle of the computer 
screen. 

Data was recorded with the ground at AFz, and a sampling rate of 
500 Hz and a low-pass filter with an attenuation of 40 dB per de-
cade above 100 Hz was employed prior to digitization. Horizontal 
eye-movements were recorded with electrodes placed 1.5 cm later-
al to the outer canthus of each eye. Vertical eye movements were 
recorded with electrodes placed 3 mm above the middle of the left 
eyebrow and 1.5 cm below the middle of the left bottom eyelid. Skin 
resistance was <10 kΩ for all electrodes. 

Automatic artifact detection and removal were performed using a 
custom-built Python package (Harris et al., 2020; Hunter, 2007; The 
Pandas development team, 2020; Virtanen et al., 2020) and were in 
accordance with deartifacting as described in (Arns, Bruder, et al., 
2016) and van Dijk et al. (van Dijk et al., 2022), with full code available 
online (www.brainclinics.com/resources). 

For the MPH/GUAN validation dataset (Loo et al., 2016), eyes-closed 
EEGs were recorded from 40 channels (AF3,AF4,AFz,C3,C4,CPz,Cz,F
10,F3,F4,F7,F8,F9,FCz,FP1,FP2,FPz,FT10,FT7,FT8,FT9,Fz,Iz,O1,O2,O
z,P10,P3,P4,P7,P8,P9,POz,Pz,T7,T8,TP10,TP7,TP8,TP9) for 5 minutes 
with a sampling rate of 256 Hz and referenced to linked ears (for fur-
ther details, see (Loo et al., 2016; McCracken et al., 2016)). Recordings 
were subsequently matched to the other data, i.e., the 40 channels 
were reduced to 22 channels matching TD-BRAIN+ set-up (with FC3, 
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FC4, CP3 and CP4 missing). Artifact rejection for the independent 
validation dataset was performed in BrainVision Analyzer Version 
2.2.0 (Brain Products GmbH, Gilching, Germany) by semi-automatic 
removal of epochs with signal amplitudes >150mV.

IAPF DETERMINATION

The individual alpha peak frequency was determined by computing 
the FFT of the preprocessed, artefact-free data. Subsequently each 
individual’s iAPF was determined by identifying the highest peak 
within the frequency range of 7 to 13 Hz. 

BIOMARKER DISCOVERY PHASE

Biomarker discovery a priori focused on males and females separately 
due to previously reported qualitative sex differences (Arns, Bruder, 
et al., 2016; Hermens et al., 2005).
In short, data with LVA were identified and excluded from further 
analysis (for more details, see supplement S3.2). In order to optimize 
EEG processing, iAPFs determined with different processing param-
eters (e.g. segment length, reference montage) were correlated with 
age (<18 years). The parameter combination with the highest cor-
relation and retention of subjects was used for further prospective 
testing. Subsequently, the data was age- and sex-standardized and 
resulting values divided into 10 equal-sized bins (deciles) to improve 
interpretability. 
For more information, see supplement S3.3.

BIOMARKER TRANSFER PHASE

We first aimed to align previous findings which differed with regard 
to primary outcome measure (response vs remission) and subsample 
(boys aged 6-18 vs boys aged 12-18) (Arns et al., 2018; Krepel et al., 
2020). To increase comparability and clinical impact, we focused our 
analyses on males in the age range of 6-18 years and on remission – 
defined as an item mean of ≤1.00 on the ADHD-RS-IV - as primary 
clinical outcome (Steele et al., 2006). 
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BIOMARKER VALIDATION PHASE

Finally, the biomarker was prospectively validated on the same sub-
sample (boys aged 6-18 years) for MPH and MM-NFB treatment by a 
blinded prediction of remission status, solely based on age, sex and 
baseline EEG in two independent datasets.

BIOMARKER EXPLORATION PHASE

Analyses for the exploration phase were similar to those in the trans-
fer phase but without a guided hypothesis. 

STATISTICS

First, Spearman correlations between the various iAPFs resulting 
from different EEG processing combinations and age in subjects be-
low 18 years (N=1671) were calculated. To determine standardized 
iAPF values independent of age, we derived non-linear regression 
models based on the full TD-BRAIN+ dataset that most closely fit 
the given data for each electrode (Fz, Pz, Oz). Different mathematical 
models following the developmental trajectory of the iAPF (such as 
a Log gaussian model, in line with van Dinteren et al., 2014) were 
contrasted against a linear model (null hypothesis) and individually 
adjusted for females and males and for each site (channel). Diver-
gence values representing where the individual’s iAPF lies in relation 
to other people’s iAPFs, were calculated from the resulting models 
by subtracting the model-derived average iAPF for each subject’s 
age from the person’s actual iAPF. Correlations between divergence 
values and age were conducted to confirm that the age effect had 
been eliminated from the data. The resulting divergence values were 
ranked from low to high and divided into 10 equal-sized bins (deciles) 
to improve interpretability by clinicians. 

The final stratification outcome for the transfer phase and stratifi-
cation decision for the exploration phase were based on the positive 
predictive values (PPVs) at different decile cut-off points, indicating 
remission rate within the subsample of patients that the biomark-
er would have stratified to the respective treatment. Since PPVs are 
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dependent on prevalence (here: observed remission) and remission 
rates differed between treatment datasets, we normalized PPVs for 
better comparability across datasets by dividing the PPV by the ob-
served remission and subtracting 1.
Curve fitting models were developed in GraphPad Prism version 
8.4.0 for MacOS. Spearman correlations were conducted with Py-
thon modules scipy, and numpy.
All other statistical analyses were performed in IBM SPSS Statistics 
for Macintosh, Version 27.0.

RESULTS

DATASETS

Table 3.1 provides a summary of the basic demographic information 
of all datasets. 

BIOMARKER DISCOVERY PHASE

Figure 3.1 visualizes the individual steps of the biomarker develop-
ment. 

In short, a total of 108 algorithm permutations were tested (Figure 
3.1.A). The resulting best permutation (linked-mastoid reference/eyes 
closed/5s segments) was selected for further prospective testing of 
the biomarker (Figure 3.1.B and C). A linear regression of the result-
ing age-standardized divergence values and age yielded a model with 
a slope of 0 ( =.000), demonstrating that the curve fitting procedure 
successfully removed the age effect seen before (e.g. Fz: R2=.000).

For an overview of all correlation and secondary analyses, see supple-
mentary material S3.3.
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BIOMARKER TRANSFER PHASE: STRATIFICATION WITH BIOMARKER RESULTS 

IN HIGHER LIKELIHOOD OF REMISSION   

To account for possible confounding effects of symptom severity, 
we first conducted a partial correlation between baseline ADHD-RS 
scores and iAPF, controlling for age, which was not significant (r=-
.064, n=253, p=.311).

Figure 3.2 summarizes the outcome of the transfer phase. The di-
rection of stratification was informed by the previously reported di-
rectionality of effects (higher iAPF indicating stratification to MPH 
(Arns et al., 2018), lower iAPF indicating stratification to MM-NFB 
(Krepel et al., 2020)) and was based on the Fz electrode as primary 
site based on prior literature (Arns et al., 2018) (see supplement S3.4 
for a post-hoc analysis examining stratification based on Fz and Oz). 
A decile cut-off point of 1-5 for MM-NFB and 6-10 for MPH was cho-
sen a priori, stratifying approximately half of the patients to each 
treatment. To test this a priori decision, positive predictive values 
(PPVs), indicating remission rates in the patient subsample that 
would have been stratified according to our biomarker were deter-
mined for different decile cut-off points. The chosen cut-off point 
of decile 5 indeed led to the highest combined PPV (supplementary 
table S3.1). Therefore, the presented biomarker (Brainmarker-1) was 
based on this cut-off point, recommending MM-NFB treatment to 
boys with a relatively lower iAPF in the decile range 1-5 and MPH to 
boys with a relatively higher iAPF in deciles 6-10 (see supplementary 
table S3.2 for additional accuracy measures).

Fig. 3.1. (page 66) Biomarker Discovery Phase. (A) Excerpt from heatmaps of the total of 108 
algorithm permutations (27 depicted) that were tested and selected based on the highest cor-
relation between age and iAPF in subjects <18 years (Spearman Correlation ; black digits) 
and the highest retention of data (number of subjects N; white digits). (B, C) Spearman Cor-
relation  between age (6-18 yrs.) and iAPF (B) and number of subjects (C) for each electrode 
and segment length (2-7 seconds) for condition eyes-closed  (EC) averaged across reference 
montages (N=1715). (D, E) Flattening the iAPF-age curve for males (D) and females (E) sep-
arately at electrode location Oz. Upper subplots depict non-standardized iAPFs and the 
optimized Log Gaussian model fit. Lower subplots depict the age-standardized divergence 
values and a linear fit through the data. (F) Example of the derived biomarker (Brainmark-
er-1) based on the final age- and sex-standardized scores, with deciles 1-5 yielding a recom-
mendation for neurofeedback (NFB) treatment and deciles 6-10 yielding a recommendation 
for methylpheniddate (MPH).  EO, eyes-open; LM, linked-mastoid
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The normalized PPV indicated a predicted increase in remission rate 
of 17% compared to the observed remission rate if patients had re-
ceived MPH (PPV=41%) and of 30% if patients had received MM-NFB 
(PPV=62%) as treatment recommendation based on Brainmarker-1.
In a post-hoc analysis predicting remission with Brainmarker-1 cal-
culated at the occipital site (Oz), no improvement could be seen for 
MPH (normalized PPV=+1.7%), however, for MM-NFB the PPV in-
creased to 71.4% (normalized PPV=+51% as compared to +30% in Fz). 
Despite this improvement for MM-NFB treatment, Fz remained the 
primary stratification site, as prediction for MPH was only possible 
with the iAPF recorded at this location. For the results of stratifi-
cation based on both Fz and Oz locations, we direct the reader to 
supplement S3.4.

OUT-OF-SAMPLE VALIDATION PHASE: STRATIFICATION BIOMARKER PRE-

DICTS REMISSION IN PROSPECTIVE VALIDATION ANALYSIS

Next, the biomarker was validated by predicting remission to MPH 
and multimodal treatment including MM-NFB (ICAN) in two inde-
pendent datasets (The Neurofeedback Collaborative Group et al., 
2021; Loo et al., 2016), blinded to clinical outcome, and based solely 
on the subjects’ age, sex and baseline iAPF. Accuracy was verified by 
a third person not involved in the EEG analysis (for MPH: authors 
GM and SKL; and for MM-NFB: author MA). Results are visualized 
in Figure 3.2. 

In line with the previous analyses, we normalized PPVs to improve 
comparability with the transfer datasets. The normalized PPV pre-
dicted an increase in remission rate of 36% (PPV=50%) compared to 
the observed remission rate if patients had received MPH and of 29% 
(PPV=29%) if patients had received the multimodal treatment based 
on Brainmarker-1.
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Fig. 3.2. Predicted remission rate after stratification. Normalized positive predictive values 
(PPVs) (in light green) for each treatment group depict predicted gain in remission if patients 
had been stratified according to Brainmarker-I. Beige vs. olive green implicates opposite di-
rection for Brainmarker-I, i.e.,beige indicates decile 6–10 (MPH) and olive green deciles 1–5 
(e.g., NFB). Note that the predicted remission in the blinded validation is highest.
1 iSPOT-A dataset (N=184), 2 NFB dataset (N=41), 3 MPH/GUAN dataset (MPH: N=41, 
GUAN: N= 35), 4 ICAN dataset (N=71). GUAN, guanfacine; ICAN, International Collabora-
tive ADHD Neurofeedback; iSPOT-A, International Study to Predict Optimised Treatment 
in Attention Deficit/Hyperactivity Disorder; MPH, methylphenidate; NFB, neurofeedback. 

BIOMARKER EXPLORATION PHASE

In a last step, we explored the predictive potential of Brainmarker-1 
for ATX and GUAN treatment. When testing different decile ranges 
for ATX, a cut-off point of ≥6 resulted in the highest normalized PPV 
of +27%(PPV= 40%). This seems to point to a similar directionality of 
effect as was observed for MM-NFB treatment, while using the cut-
off point that was also used for MPH (deciles ≥6) results in a decline 
in remission rate (improvement: -8%). However, when the same deci-
sion process as for MM-NFB was applied, i.e. predicting remission to 
ATX in individuals with decile scores ≤5, the resulting improvement 
was marginal(PPV = 33%, improvement= +6%). 
For GUAN treatment, a prediction of remission for deciles 6-10, 
the same that was used for MPH prediction, resulted in the highest 
PPV(53%) and normalized PPV(+26%).
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DISCUSSION

In the present study, an iAPF algorithm indexing brain maturation 
was developed in the Biomarker Discovery Phase in a large clinical 
sample. Subsequently, this iAPF was employed to develop an iAPF-
based, age- and sex-standardized treatment stratification biomarker 
(Brainmarker-1), which was found to be capable of differentially in-
forming stratification to MPH and MM-NFB treatment. The results 
from the Biomarker Transfer Phase indicate that a neurobiologically 
heterogeneous sample of ADHD patients can be successfully divided 
into two more homogeneous sub-samples characterized by a rela-
tively faster or slower iAPF and a differential response to MPH and 
MM-NFB. 

Given both MPH and MM-NFB can be considered effective interven-
tions for the treatment of ADHD, with remission rates between 31-
51% (Arns et al., 2020; Cortese et al., 2018), employing EEG to stratify 
to one of these treatments effectively increases predicted remission 
rates in the stratified group by 17-30% compared to non-stratified 
remission rates. Crucially, the Biomarker Validation Phase substan-
tiated Brainmarker-1 through a blinded out-of-sample prediction 
of remission in two external datasets, based solely on age, sex and 
baseline iAPF. Since Brainmarker-1 uses only basic demographic in-
formation and resting-state EEG data, it can easily be implement-
ed in clinical practice, using an algorithm which calculates age- and 
sex-standardized iAPF and decile score and yields a treatment rec-
ommendation.

Most importantly, the directionality of iAPF and its association with 
remission to MPH/GUAN is opposite that of MM-NFB/ATX. This is 
imperative for the concept of treatment stratification, as its aim is to 
use a biomarker to inform the best treatment option for each patient 
choosing from a range of effective treatments for that disorder, in-
stead of merely discouraging a particular intervention. 

This differential association of iAPF with remission in response to dif-
ferent treatments might be related to the branches of the autonomous 
nervous system (ANS). ADHD has been associated with hypoarousal 
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of the ANS or a hyperactivity of the parasympathetic nervous system 
(PSNS) (Bellato et al., 2020; Musser et al., 2011) which is supported by 
the finding that heart rate (HR) is generally lower in children with 
ADHD, suggestive of higher vagal tone (Arns et al., 2008). However, 
there have also been studies that found an elevated sympathetic ner-
vous system (SNS) response (Hermens et al., 2005; Leikauf et al., 2017) 
or a hyperactivation of both PSNS and SNS (Morris et al., 2020), point-
ing to a general ANS imbalance. Similarly, iAPF has been hypothesized 
to index fight or flight response, with the iAPF acutely speeding-up 
in the presence of an acute threat, such as pain (Nir et al., 2010), or 
slowing down with chronic stress such as chronic pain (Boord et al., 
2008; Sarnthein et al., 2006) or burnout syndrome (van Luijtelaar et 
al., 2010), possibly reflecting a thalamocortical gating mechanism, 
counter-regulating the surplus of pain- or stress-induced innervation 
(Boord et al., 2008; Nir et al., 2010). Moreover, it has been shown that 
people with PTSD, a disorder characterized by an overactive SNS, have 
a generally faster iAPF (Wahbeh & Oken, 2013). A slower iAPF could 
thus point to a hyperactive PSNS while a faster iAPF could reflect rel-
atively normal PSNS or increased SNS activation.

While MPH also acts on noradrenaline, its main working mechanism 
seems to be an increase of synaptic dopamine by inhibiting dopa-
mine re-uptake through inhibition of the dopamine transporter. It 
might, thus, be possible that the mechanism of action of MPH is 
relatively unrelated to ANS imbalances and instead brings about its 
effect by acting on a number of different neurotransmitters simul-
taneously (Challman & Lipsky, 2000). This is in line with a recent 
meta-analysis that reports null effects of ANS imbalances in ADHD 
as the most common finding (Bellato et al., 2020), suggesting a more 
diverse pathophysiology that goes beyond ANS abnormalities. 

On the other hand, ATX, a selective noradrenaline reuptake inhibitor 
(SNRI) might normalize PSNS hyperactivity in people with a slow-
er iAPF by increasing noradrenaline, the major neurotransmitter in 
the SNS. Although the relation with iAPF is unclear, one difference 
in working mechanism between MPH and ATX is the location of 
their dopaminergic and noradrenergic effects, with both increasing 
noradrenaline and dopamine in the prefrontal cortex but only MPH 
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leading to an increase in striatum and nucleus accumbens (Bymaster 
et al., 2002).

Our findings indicate that the effect of GUAN is similar to that of 
MPH. While both drugs act on noradrenaline, GUAN, an alpha2a ad-
renergic receptor agonist, inhibits noradrenaline thereby dampening 
sympathetic arousal which might explain its effect in people with a 
higher iAPF (Fox & Sinha, 2014).

Our biomarker findings thus suggest that there might be relevant 
functional differences between ATX, MPH and GUAN, requiring fur-
ther investigation.

The precise working mechanism of EEG-NFB is unknown at pres-
ent. However, speculatively, it has been hypothesized that SMR-NFB 
might affect sleep-regulating mechanisms (Arns, Feddema, et al., 
2014; Arns & Kenemans, 2014; Sterman et al., 1970). Since ADHD has 
been associated with increased daytime sleepiness (Golan et al., 2004) 
and sleepiness is correlated with increased parasympathetic activity 
(Pressman & Fry, 1989), EEG-NFB might work by improving sleep and 
thereby normalizing parasympathetic activity. On the other hand, 
Pimenta and colleagues recently emphasized the multimodal nature 
and importance of non-specific effects of this treatment (Pimenta 
et al., 2021), also evident from the absence of group effects in the 
double-blind placebo controlled ICAN study (The Neurofeedback 
Collaborative Group et al., 2021) that was used here in the validation 
phase. Long-term effects of up-to one year follow-up in the ICAN 
study demonstrated clinical benefits – on the group level – similar to 
the MPH arm of the NIMH-MTA study (The Neurofeedback Collab-
orative Group et al., 2021). This further suggests that the multimodal 
approach including frequent reinforcement as well as sleep coaching 
are important factors.

While we demonstrated the prognostic value of Brainmarker-1 in 
two independent and blinded out-of-sample validations, the pres-
ent study also had some limitations. Brainmarker-1 presently only 
pertains to males and ages 6-18 years. The reason for this is limited 
sample size for females in the treatment studies and clear qualita-
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tive sex-specific effects (Arns et al., 2018), as well as a lack of adult 
participants for most of the datasets, which prevented us from in-
vestigating stratification for these groups. Findings in females might 
be particularly important since they are usually underrepresented in 
ADHD research (Bedard & Witman, 2020) and future research should 
specifically focus on this subgroup. Likewise, investigating treatment 
stratification in adults with ADHD would be valuable. 

Since the present study examined multiple treatment datasets from 
different test locations with different designs, rating scales, methods, 
and EEG methodology, testing was not standardized. However, the 
fact that the out-of-sample validation was successful demonstrates 
the strength of the developed biomarker in spite of those differences. 
Moreover, the transfer MM-NFB sample received EEG-NFB treat-
ment augmented with sleep hygiene and coaching while the MM-
NFB validation dataset received a MM-NFB or control treatment and 
sleep hygiene, coaching and nutrition counselling. Findings might, 
therefore, not be directly comparable to standard EEG-NFB mono-
therapy (Krepel et al., 2020). 

While this study already successfully validated MPH and MM-NFB 
prediction by means of Brainmarker-1, a validation study that pro-
spectively stratifies patients between the interventions based on 
baseline iAPF would be valuable, similar to the feasibility study of 
van der Vinne (van der Vinne et al., 2021). Since the relationship be-
tween iAPF and MDD treatment outcome has already been estab-
lished (Arns et al., 2017; Corlier et al., 2019; Roelofs et al., 2020), a 
next step will involve incorporating different pharmacological and 
non-pharmacological interventions for MDD making the here pre-
sented Brainmarker-1 a transdiagnostic biomarker. 
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SUPPLEMENTARY MATERIAL

EEG LITERATURE

EEG (pre-)processing, as well as conditions and montages employed, 
often differ considerably across studies which can hinder replication 
of findings and thereby implementation of biomarkers in clinical 
practice.

A positive linear correlation between iAPF and response to rTMS in 
MDD from prior work could not be replicated with a linked-mastoids 
(LM) montage (1,2) whereas a robust and replicated quadratic associa-
tion could be found when using an average (AR) but not a LM reference 
(3,4). This shows the need for a standardized and fixed (pre-) process-
ing pipeline, uniformly applied across datasets. Another aspect is the 
choice of frequency range employed to determine the iAPF. Already 
in the 1930s it was reported that alpha oscillations in children are still 
immature and often slower than in adults with peaks even below 8Hz - 
while peaks above 12 Hz could also be observed (5). While most studies 
consider 8 and 12 Hz the outer bounds of the alpha range, in more het-
erogeneous populations values will likely scatter below or above these 
boundaries and the extreme ends of the frequency band might thus be 
clinically most relevant. This warrants a more flexible analysis with a 
wider frequency window of 7 to 13 Hz.

LOW-VOLTAGE ALPHA

Datasets with LVA were identified and excluded from further analysis 
since in cases of absent alpha, no reliable peak can be determined 
which would decrease the signal-to-noise ratio for iAPF and weaken 
treatment prediction on the group-level. The average spectral power 
value in the alpha range (7-13 Hz) was determined with the Fast Fou-
rier Transform (FFT) in all 3 electrodes (Fz, Pz, Oz) for each individual 
and subsequently log-transformed. The z-score of -1.96 in Pz, i.e., the 
lowest 5% of the log-transformed spectral alpha power, marked the 
threshold for insufficient alpha power (supplementary figure S3.1). 
This value was validated by visually inspecting 1% of the recordings 
above and below this threshold for alpha oscillations. When the spec-
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tral power value in an electrode fell below this threshold the data of 
this electrode was discarded. This process was repeated for both LM 
and AR.

Supplementary Figure S3.1. Normal distribution of alpha spectral power (7-13 Hz) with 
threshold set at a z-score of -1.96 in electrode Pz.

BIOMARKER DISCOVERY PHASE

In order to optimize EEG processing, iAPFs determined with differ-
ent processing parameters were correlated with age based on the 
well-established notion that iAPF indexes brain-maturation, thus val-
idating against the biologically most plausible alpha peak that is able 
to explain most of the variance (i.e., the highest correlations with 
age). An upper age threshold of 18 years was chosen a priori, i.e., the 
age at which iAPF is assumed to plateau, based on early literature (5) 
and more recent work that showed the iAPF maturation effect in a 
sample aged 6 to 18 years (6). A total of 108 algorithm permutations 
were tested with 1) condition (eyes closed (EC), eyes open (EO) or 
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EC-EO Difference (Diff)), 2) choice of segmentation length (2-7s), 3) 
montage (linked-mastoids (LM), average reference (AR)), and 4) topo-
graphical location (channel location Fz, Pz, Oz). 

A decision on segment length was made based on 1) the strength of the 
correlation and 2) the number of subjects retained for each segment 
length and averaged across reference (LM and AR), and conditions (EC, 
EO, Diff) for all 3 electrode locations (Fz, Pz, Oz) separately. The choice 
of reference montage was based on the highest iAPF age correlation for 
the age range of interest, i.e., subjects below the age of 18. 

Discarding subjects without alpha oscillations, as specified above re-
sulted in data loss of 4.8% (in Pz) to 7.3% (in Oz). 

Correlations and data retention averaged across all segment lengths 
was highest in the EC condition with  between 0.28 (Fz) and 0.34 
(Oz) (except for Oz where the correlation was higher for EO but data 
retention was much lower). Therefore, EC was chosen as the con-
dition for subsequent analyses. As depicted in Figure 3.1, electrodes 
Pz and Oz showed the highest correlation (Fz second highest) with 
age (Oz:  of 0.34) for a segment length of 5s (with condition EC and 
averaged across reference montages) while data retention was high-
est for 5s segment-length in all 3 electrode sites (97%). The strongest 
overall correlation between age and iAPF for both reference mon-
tages for 5s segment length and condition EC was found in electrode 
Oz. Since this correlation was slightly higher in LM than in AR (= 
0.34 vs = 0.33), and data retention was the same (97% across all elec-
trodes) for both LM and AR, LM was chosen as primary reference 
montage. All 3 electrode locations were examined in further prospec-
tive biomarker testing. 

In a post hoc analysis, comparing reference montages between 
children (age 6-18 yrs.) and adults, the iAPF determined with a LM 
reference montage led to a slightly higher correlation with age for 
children (6-18yrs.) compared to the iAPF determined with an AR 
montage (= 0.12 vs =0.11), while this was reversed for adults (=0.05 
vs = 0.06), i.e., the AR reflected the adult data better.
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GraphPad Prism (GraphPad Software, La Jolla California USA, www.
graphpad.com) was employed in the full TD-BRAIN+ data to find the 
mathematical model that most closely approximates the brain-mat-
uration effect. In line with previous evidence (7), a log Gaussian fit 
determined separately for males and females and for each electrode 
location most appropriately followed the data (males: r2 = 11.9% (Oz); 
females: r2= 12.6% (Oz)) and continuously outperformed the linear 
model (H0; p <1x10-15). Normalized iAPF values for each individual 
(divergence values), derived by subtraction of the model-predicted 
iAPF from the real iAPF, scattered around 0. Note that in Figure 3.1, 
divergence values seemingly following the previous age curvature 
pattern result from the temporal resolution limits of 0.2Hz caused 
by data segmentation. 

In order to validate the use of a clinical instead of a normative data-
set, the full curve fitting procedure in GraphPad prism, specified 
above, was repeated in a normative dataset (8). Subsequently, in a 
comparison of fit both the normative and the clinical curve fit were 
applied to both the normative and clinical data separately and the fit 
was compared. Comparing the curve fit of the clinical TD-BRAIN+ 
dataset with the curve fit specific to a normative dataset (8) in Graph-
Pad prism, indicated that the parameters of the clinical dataset gen-
eralized significantly better (p=0.03) to the normative data than the 
other way around (p=.21), suggesting that the clinical data is better 
capable of capturing and explaining variance.

Supplementary Figure S3.2. (page 79) Heatmaps depicting Spearman correlations and num-
ber of subjects retained (Total N= 1662) between age (6-18y) and iAPF with Average reference 
montage (A) and Linked Mastoids montage (B), segment length of 2-7s and different condi-
tions for electrodes Fz, Pz, Oz.
EC = Eyes Closed, EO= Eyes Open, Diff = Difference of Eyes Closed - Eyes open, AR = Aver-
age Reference, LM = Linked Mastoids reference
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Supplementary Table S3.1. PPV for different decile cut-off points at Fz for males (6-18y)
PPVs (predicted remission) per treatment group indicate remission if only subjects with the 
respective decile score had been assigned to the respective treatment. For instance, subjects 
with decile score of 1-3 who received NFB/ATX are included in the NFB/ATX PPV while sub-
jects from the MPH/GUAN group with the remaining decile scores (e.g. 4-10) are included 
for MPH/GUAN PPV.

Supplementary Table S3.2. Biomarker accuracy males.
Stratification to MPH/GUAN for decile >=6, and to NFB/ATX for decile <=5 for males (6-
18yrs.)
MPH = Methylphenidate, NFB = Neurofeedback, ATX = Atomoxetine, GUAN = Guanfa-
cine, PPV = positive predictive value, NP V= negative predictive value. 

Predicted 
remission in 
decile range

1-3 NFB/ATX
4-10 MPH/GUAN
1-4 NFB/ATX
5-10 MPH/GUAN
1-5 NFB/ATX
6-10 MPH/GUAN
1-6 NFB/ATX
7-10 MPH/GUAN

NFB

57.1%

54.5%

61.5%

53.3%

GUAN

45%

50%

52.9%

41.7%

ATX

26.7%

33.3%

33.3%

40%

MPH&NFB
combined

42.3%

43%

43.9%

41.9%

MPH

41.4%

41.7%

41.2%

39.4%

Observed
remission
Sensitivity
Specificity
PPV
NPV
Normalized 
PPV 

NFB

47.4%

44.4%
75%
61.5%
60%
30%

MPH 
validation

36.7%

72.7%
57.9%
50%
78.6%
36%

NFB 
validation

22.5%

43.8%
69.1%
29.2%
80.9%
29%

ATX

31.6%

58.3%
46.2%
33.3%
70.6%
6%

GUAN

41.9%

69.2%
55.6%
52.9%
71.4%
26%

MPH

35.4%

54.7%
57.3%
41.2%
69.8%
17%
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A. Methylphenidate

B. Neurofeedback

Supplementary figure S3.3. Distribution of iAPF deciles for each dataset
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As depicted in table S3.3, basing the stratification on the occipital 
electrode site Oz, tends to lead to an even higher gain in predict-
ed stratified remission for NFB treatment (and also slightly for ATX 
treatment) while prediction for remission to MPH would worsen. It 
could therefore be valuable to take the prediction at Oz into account 
for the final stratification decision.

In an exploratory analysis, we examined how predicted remission 
rate would change if only those subjects were included that would 
have received the same recommendation for both Fz and Oz elec-
trode. 67% of subjects from the pooled MPH and NFB transfer data-
sets received a matching recommendation. The PPV in this subgroup 
was 44.2% (normalized PPV = 24.3%) in the MPH dataset and 85.7% 
(normalized PPV = 80.8%) in the NFB sample, which reflects an im-
provement over the remission rates from the whole sample reported 
in figure 3.2. 

This suggests that future research should examine the relevance of 
topographical location of the iAPF for prediction of treatment out-
come.

Supplementary Table S3.3. PPV and normalized PPV for electrodes Fz and Oz.
Comparison of PPVs (predicted remission) and normalized PPVs per treatment group for 
electrode sites Fz and Oz with decile scores 1-5 for NFB/ATX treatment and decile scores 
6-10 for MPH treatment. Note that the prediction for NFB increases substantially when 
considering the Brainmarker-1 calculated at channel Oz.

MPH (Fz)
MPH (Oz)
NFB (Fz)
NFB (Oz)
ATX (Fz)
ATX (Oz)

PPV
41%
36%
62%
71%
33%
35%

Normalized PPV
17%
2%
30%
51%
6%
12%
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ABSTRACT

Background: High symptom heterogeneity in major de-
pressive disorder hampers effective treatment pre-
scription resulting in reduced remission rates at the 

group level. The recently developed Brainmarker-I, an age- and 
sex-normalized EEG measure of individual alpha peak frequen-
cy (iAF), has shown potential to stratify between different atten-
tion-deficit hyperactivity disorder interventions. Introduction 

Objective: This study investigates Brainmarker-I’s transdiagnostic 
value for predicting remission to different depression interventions 
such as repetitive transcranial magnetic stimulation (TMS) and elec-
troconvulsive therapy (ECT). 

Methods: We first conducted a blinded out-of-sample validation 
(EMBARC;N=240), aiming to replicate the association between low 
iAF and better sertraline response. Differential iAF directions were 
then explored for brain stimulation treatments rTMS (10 Hz & 1 Hz 
rTMS; N=196) and ECT (N=41), with subsequent blinded out-of-sam-
ple validations for 1 Hz rTMS (N=39) and ECT (N=51), and a simu-
lation of expected increase in remission when using Brainmarker-I. 
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For each dataset, the positive predictive value (PPV) of remission in 
the biomarker-predicted subgroup was calculated and normalized 
(nPPV). 

Results: Previous sertraline findings were replicated (nPPV=+15%). 
For brain stimulation interventions, the simulated biomarker usage 
increased normalized remission rate by +29% for 10 Hz rTMS, +14% 
for 1 Hz rTMS and +38% for ECT. Blinded out-of-sample valida-
tions for 1 Hz and ECT corroborated these findings (nPPV=+16% and 
nPPV=+18%, respectively). If the biomarker-predicted subgroups had 
been stratified to their respective best brain stimulation treatment, 
normalized remission rate would increase by 24%.

Conclusions: The present study suggests a clinically actionable trans-
diagnostic biomarker that can successfully stratify between various 
antidepressant treatments.

ALPHA PEAK FREQUENCY-BASED BRAINMARKER-I AS A 
METHOD TO STRATIFY TO PHARMACOTHERAPY AND 
BRAIN STIMULATION TREATMENTS IN DEPRESSION
 

INTRODUCTION

Major depressive disorder (MDD) is one of the most common and 
debilitating disorders worldwide (World Health Organization, 
2008). The disorder’s high level of heterogeneity (both in symptoms 
and neurophysiology) complicates adequate treatment prescription, 
which may limit treatment response (Drysdale et al. 2017; Goldberg 
2011; Luo et al. 2019). For instance, both antidepressant medication 
and cognitive-behavioral therapy led to insufficient symptom relief at 
the group-level when treatment was assigned in an arbitrary fashion 
(Rush et al. 2006), with response rates around 40-50% and remission 
rates around 30-40% (Arns et al. 2022).

While targeting the patient’s individual neurophysiology (e.g. preci-
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sion psychiatry) seems to be infeasible at present, an implementable 
alternative is treatment stratification (for a discussion, see (Arns et 
al. 2022)), which reduces heterogeneity within a disorder by identi-
fying subgroups of patients that preferentially respond to a certain 
treatment, using so-called biomarkers (van der Vinne et al. 2021; 
Olbrich et al. 2015). A non-randomized, open-label study, based on 
resting-state electroencephalography (EEG) biomarkers, prospective-
ly stratified between three antidepressants in MDD which resulted 
in better clinical outcomes relative to treatment-as-usual (van der 
Vinne et al. 2021). Importantly, due to its relatively low cost and ease 
of usage, EEG-biomarker stratification is especially suited for wide-
spread implementation in clinical practice.

Several EEG biomarkers for treatment outcome in MDD have been 
proposed (Olbrich, van Dinteren, and Arns 2015; Olbrich and Arns 
2013). However, few markers could successfully be replicated. In fact, a 
recent meta-analysis examining EEG markers of treatment response in 
MDD raised doubts about their clinical applicability due to publication 
bias and a lack of cross- and out-of-sample validations (Widge et al. 
2019). 

One EEG pattern that has shown potential as stratification biomarker 
is the individual alpha peak frequency (iAF), which denotes the modal 
frequency of an individual’s alpha oscillations (7-13 Hz). The iAF has 
been shown to be associated with cognitive performance and to be ab-
errant in various mental disorders. For instance, faster iAF has been 
related to better cognitive performance (Clark et al. 2004; Pahor and 
Jaušovec 2016; Grandy et al. 2013; Klimesch 1999), while slower iAF has 
been associated with higher symptom severity (Struve and Boutros 
2005; Boutros 1996) and less favorable treatment outcome (Arns et al. 
2008; Arns, Spronk, and Fitzgerald 2010; Arns 2012) and has been ob-
served across many disorders such as Alzheimer’s disease (Rodriguez 
et al. 1999), burnout syndrome (Luijtelaar et al. 2010), mild cognitive 
impairment (Garcés et al. 2013), psychosis (Murphy and Öngür 2019), 
schizophrenia (Murphy and Öngür 2019; Yeum and Kang 2018), and 
attention-deficit hyperactivity disorder (ADHD) (Bazanova, Auer, and 
Sapina 2018), with this slowing potentially reflecting reduced thalamo-
cortical information transfer.
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In ADHD patients, slower iAF has been related to worse treatment 
outcome to methylphenidate (Arns et al. 2018) and better treatment 
outcome to multimodal-neurofeedback (Krepel et al. 2020). Based on 
these findings, our group recently developed Brainmarker-I, which is 
based on the iAF measured during the resting-state EEG. We showed 
that this biomarker can successfully assign patients with ADHD to 
the individual best out of several treatment options, with findings 
confirmed in blinded-out-of-sample validations (Voetterl et al. 2022). 
For antidepressant medication (amitriptyline and pirlindole), a slow 
iAF was shown to be predictive of non-response (Ulrich et al. 1984). 
However, this finding does not generalize across antidepressants, as 
was shown by subsequent studies reporting an association between 
slow iAF and better response to the selective sertraline reuptake in-
hibitor sertraline (Arns, Gordon, and Boutros 2016). For repetitive 
transcranial magnetic stimulation (rTMS), a different association 
has been observed. Specifically, an iAF closer to 10 Hz (i.e., the rTMS 
stimulation frequency) was associated with better improvement to 
10 Hz left-dorsolateral prefrontal cortex (L-DLPFC) rTMS (Corlier et 
al. 2019), which was independently replicated, while no association 
emerged between iAF and outcome of 1 Hz right-DLPFC (R-DLPFC) 
rTMS (Roelofs et al. 2020). For electroconvulsive therapy (ECT), to 
our knowledge, iAF prediction of treatment outcome is unknown.

Following these promising findings, we aimed to extend Brainmark-
er-I, developed for ADHD treatment stratification (Voetterl et al. 
2022), to treatments for MDD. We decided a priori to conduct statis-
tical analyses in line with Voetterl et al (Voetterl et al. 2022) and the 
hypotheses outlined below, focusing only on remission as our prima-
ry outcome, given its higher clinical relevance and in order to avoid 
multiple testing. We first conducted a blinded out-of-sample valida-
tion in the double-blind placebo-controlled EMBARC dataset (Es-
tablishing Moderators and Biosignatures of Antidepressant Response 
for Clinical Care) (Pizzagalli et al. 2018; Trivedi et al. 2016), aiming to 
replicate the previously mentioned sertraline finding and to demon-
strate specificity of iAF-based prediction for sertraline but not pla-
cebo. Next, biomarker directions were tested for brain stimulation 
treatments, focusing on potential treatment stratification of patients 
with a difficult-to-treat depression. An iAF close to 10 Hz was a pri-
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ori considered an indication for 10 Hz L-DLPFC rTMS, based on the 
above-mentioned replicated research (Corlier et al. 2019; Roelofs et 
al. 2020). For both 1 Hz and ECT treatment, discovery analyses were 
conducted and all possible directions of effect were examined. A po-
tential finding was subsequently validated through blinded biomark-
er-informed prediction of patients’ remission status in unseen data-
sets. Finally, exploratory analyses testing predictive value of iAF for 
psychotherapy, ketamine and bupropion treatment were conducted.

Figure 4.1. Visualization of the Brainmarker-I classification. 
A filled, pink dot on the left denotes either that the patient has low voltage alpha or that 
their iAF falls into the frontal synchronization range (9.6–10.4 Hz) (depicted above). The iAF 
is depicted in Brainmarker-I decile scores from 1 (relatively slow) to 10 (relatively fast). Low 
deciles (decile 1–5; blue) indicate stratification to ECT, Sync (orange) indicates 10 Hz rTMS 
treatment stratification, high deciles (decile 6–10; burgundy) indicate 1 Hz rTMS treatment. 
As visualized, the synchronization range overlaps with the decile scores, depending on the 
age of the individual (for example, higher deciles overlap more for older age). For subgroup 
assignment, the synchronization range is leading, that is, if an individual falls into that 
range, they are assigned to the synchronization group, otherwise the decile score indicates 
assignment to either low- or high-decile subgroup. A simulation for full group stratification 
was conducted where remission was calculated for all datasets combined but including only 
individuals in the respective stratified groups (for example, individuals with a high decile 
score in the 1 Hz rTMS samples). Sync, synchronization marker.
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Resting-state eyes-closed EEG data were preprocessed for all data-
sets, in line with previous preprocessing (Arns et al. 2016). The iAF 
was calculated in accordance with Voetterl et al. (Voetterl et al. 2022) 
and each patient was assigned a decile score, with low scores reflect-
ing a slow iAF. Additionally, a synchronization indicator, denoting 
an iAF between 9.6-10.4  Hz at the F3 location was implemented (Fig. 
4.1) to mark close proximity to 10 Hz, resulting in 3 distinct biomark-
er subgroups which were compared for the different treatments: 
synchronization, low deciles (decile score 1-5 without synchroniza-
tion range), high deciles (decile score 6-10 without synchronization 
range). Positive predictive values (PPVs) indicated the remission rate 
within each Brainmarker-I subgroup. A normalized PPV (nPPV) was 
calculated to be able to compare remission rates that differed be-
tween datasets. In short, the respective remission rate of each dataset 
was set to 100% and the increase or decrease after stratification in 
relation to these 100% was calculated. 

Finally, number-needed-to-treat (NNT) was calculated, which 
demonstrates how many patients need to be treated with the treat-
ment recommended by the biomarker to get one more patient to re-
mit compared to treating patients with the same active treatments 
but in a random fashion (not informed by the biomarker).

Table 4.1. Basic demographic information EMBARC dataset
Basic demographic information for different treatment arms in the EMBARC Dataset-1.

Treatment Arm

Timepoint of outcome

Sample size (N)
Males (%)
Mean age, years

Sertraline 

Week 8

114
37 (32)
35.6

Placebo

Week 8

126
49 (39)
35.3

Sertraline

Week 16

57
20 (35)
36.5

Placebo

Week 16

37
16 (43)
34.3

Sertraline-
Bupropion

Week 16

54
17 (31)
34.3
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RESULTS

Remission rates of each dataset and treatment group are summarised 
in Supplementary Table S4.1.

BLINDED SERTRALINE REPLICATION

Results for the EMBARC dataset are visualised in Fig. 4.2. 
Since the aim was to replicate previous findings of low iAF and re-
mission to sertraline, the directed hypothesis was that the remission 
rate would be higher in the low decile subgroup. 

At 8 weeks treatment, the low decile subgroup showed a slight-
ly higher remission to sertraline treatment compared to group re-
mission (nPPV: +9%, PPV: 45%, NNT=28), which increased to +15% 
(PPV= 83%, NNT=9) at 16 weeks. For placebo, no direction of effect 
was found (nPPV: +3%) after 8 weeks, or after prolonged treatment at 
16 weeks (nPPV= -3%). 

BRAIN STIMULATION TREATMENTS

Stratification results of the rTMS and ECT analyses are visualised in 
Fig. 4.3. Full results of analyses in all 3 biomarker subgroups can be 
found in Supplementary Table S.4.2.

In line with previous evidence (Corlier et al. 2019; Roelofs et al. 2020), 
the remission rate in the synchronization subgroup (iAF between 9.6-
10.4  Hz) in Dataset-2 for patients who had received 10 Hz rTMS was 
increased (nPPV=+29%, PPV= 77%, NNT=6) compared with the to-
tal group remission rate. 10 Hz rTMS was therefore regarded as first 
treatment choice for patients with a 10 Hz-synchronous iAF.

Of the different subgroups tested in Dataset-2 in patients who had re-
ceived 1 Hz rTMS treatment, the high decile group showed the highest 
remission rate with an nPPV of +14% (PPV = 60%, NNT=14). A blinded 
out-of-sample validation in the unseen rTMS Dataset-3 confirmed this 
direction of effect with an nPPV of +16% (PPV = 50%, NNT=15).
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For ECT, the low decile subgroup in Dataset-4 presented with an 
increased remission rate of +38% (nPPV; PPV = 36%; NNT=10) com-
pared with the total group remission rate. A blinded out-of-sample 
validation in Dataset-5 corroborated the direction of effect with an 
nPPV of +18% (PPV = 72%; NNT=9).

BRAIN STIMULATION TREATMENT STRATIFICATION

Based on prior findings, we conducted a simulation for stratification 
between brain stimulation interventions, calculating the weighted 
average of the PPVs that had previously been determined for each 
treatment.

The percentage of patients falling into the 3 different subgroups 
across all included rTMS and ECT datasets differed (see discussion). 
For low decile, synchronization and high decile subgroup, these were 
47%, 30% and 23%, respectively. 

Figure 4.2. Independent validation of better remission rate to sertraline treatment in slow-
iAF subgroup in a randomized, double-blind, placebo-controlled trial. Normalized remission 
rate in the low-decile subgroup for placebo and sertraline treatment arm after 8 or 16 weeks 
of treatment.
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Weighing each PPV in the biomarker-allocated subgroups by these 
percentages, and merging the different treatment samples into 
one dataset led to an increase in remission rate from 53% to 65% 
(NNT=9), an increase of normalized remission rate of +24% over the 
non-stratified remission rate. 

EXPLORATORY ANALYSES

For psychotherapy Dataset-6, patients in the low decile subgroup 
were more likely to remit, with an nPPV of +19% (PPV=35%; NNT=15). 
In the ketamine Dataset-7 and in patients of Dataset-1 who received 
buproprion for 8 weeks, neither low nor high decile scores were as-
sociated with remission (nPPV= -2% and nPPV= +1% for low deciles, 
respectively). Results are visualised in Supplementary Figure S4.1.

CONFOUNDING FACTORS ANALYSES

To ascertain the presented findings were not related to differences 
in depression severity, we conducted one-way ANOVAs between the 
3 biomarker subgroups (low decile without synchronization range, 
synchronization range, high decile without synchronization range) 
and baseline depression scores for all main datasets separately. There 
were no significant differences between groups in any of the datasets 
(p>.147).

Table 4.2. Basic demographic information all datasets.

Full Datasets

Sample size (N)
Males (%)
Mean Age, years,
(SD) 

Dataset-2 

10 Hz lDLPFC 
rTMS

74
38 (51)
41.5 (12.2)

Dataset-2 

1 Hz rDLPFC 
rTMS

113
58 (51)
44.9 (13.2)

Dataset-3

1 Hz rDLPFC 
rTMS

39
18 (46)
42.4 (16.5)

Dataset-4 

ECT

41
15 (37)
51 (15.4)

Dataset-5 

ECT

51
19 (36)
51.2 (12.2)

Dataset-6 

Psycho-
Therapy

156
 58 (37)
37.2 (14.1)

Dataset-7 

Ketamine

81
37 (46)
43.5 (11.8)
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Figure 4.3. Normalized remission rates within subgroups that would be assigned to respec-
tive treatment according to the biomarker. Orange color indicates synchronization sub-
group, burgundy indicates high-decile subgroup and blue indicates low-decile subgroup.

DISCUSSION

The present study successfully extends the previously introduced 
Brainmarker-I for ADHD to MDD treatment, thereby presenting a 
transdiagnostic and clinically actionable EEG biomarker. Following 
the previous finding of better treatment response to sertraline in pa-
tients with a low iAF (Arns, Gordon, and Boutros 2016), we aimed 
to replicate this direction of effect in the randomized, placebo-con-
trolled EMBARC dataset, expecting no effect for placebo. In addition 
to replicating the previously shown sertraline effect (Arns, Gordon, 
and Boutros 2016) for remission after 8 weeks and 16 weeks of ser-
traline treatment, we demonstrated that this effect is specific to ser-
traline and does not hold for placebo at either of the two timepoints 
of outcome. The increase of remission rate to sertraline at week 8 
was small (nPPV=+9%), likely due to the high placebo remission rate 
of 29% that did not significantly differ from the week-8 sertraline 
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remission rate of 32%. It is known that placebo response can be sub-
stantial in antidepressant trials (Walsh et al. 2002; Brunoni et al. 
2009) and a diminished response to the active antidepressant treat-
ment has been reported in studies that include a placebo arm (Sinyor 
et al. 2010). It is perceivable that the sertraline effect at week 8 was 
diminished by the possibility of receiving the inactive compound. 

For 10 Hz rTMS treatment, the effect of better clinical response to 10 
Hz rTMS in patients with an iAF closer to 10 Hz had already previ-
ously been demonstrated (Corlier et al. 2019) and replicated (Roelofs 
et al. 2020). We quantified this finding by determining the Brain-
marker-I synchronization subgroup in Dataset-2, which showed an 
increased normalised remission rate of +29% to 10 Hz rTMS com-
pared to the group remission rate. This finding has been linked to the 
theory of 10 Hz stimulation entraining the endogenous oscillations 
to the stimulation frequency, with the Arnold tongue model predict-
ing better entrainment the closer the stimulation frequency is to the 
endogenous frequency (Huang et al. 2021; Corlier et al. 2019).

For 1 Hz rTMS we explored linear effects in both directions, with ei-
ther low or high decile scores corresponding to remission. Only high 
decile scores were associated with increased remission to 1 Hz rTMS 
(nPPV=+14%). This association was successfully replicated in a blind-
ed-out-of-sample validation in rTMS Dataset-3 with a 16% higher nor-
malised remission rate in the biomarker-identified subgroup. The same 
discovery analyses were repeated for ECT treatment. In ECT Dataset-4, 
the low decile subgroup presented with a higher normalized remission 
rate of +38% (PPV=36%) compared to the overall group remission rate. 
We subsequently replicated this direction of effect in a blinded, out-of-
sample validation in ECT Dataset-5, with an increased remission rate 
of +18% (PPV=72%) in the low decile subgroup. 

Given that a slow iAF might be considered an abnormality in the EEG 
(Luijtelaar et al. 2010; Garcés et al. 2013; Ramsay et al. 2021; Yeum and 
Kang 2018; Murphy and Öngür 2019; Dickinson et al. 2018), this find-
ing is in line with previous results, showing that patients with EEG 
abnormalities not only responded better to bilateral than to unilat-
eral ECT, they also responded better to bilateral ECT than the group 
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without abnormalities (77% response vs 67%, respectively) (Malaspina 
et al. 1994). Although the publication did not specifically mention 
slow iAF as one of the assessed abnormalities, our findings support 
the conclusion of better treatment response to bilateral ECT in pa-
tients with EEG abnormalities since most patients in Dataset-4 (74%) 
and all patients in Dataset-5 received bilateral ECT. Future research 
is needed to examine whether our finding only holds for bilateral 
ECT as suggested by the findings by Malaspina et al (Malaspina et 
al. 1994). Interestingly, in a secondary analysis (Supplementary Dis-
cussion S4.1.) examining the association between side effects to ECT 
and iAF in replication Dataset-5, we found that those patients that 
Brainmarker-I classified as ECT remitters also experienced fewer side 
effects of any kind (mainly memory impairment) with an nPPV of 
+23% (PPV=44%). This is a particularly intriguing finding since ECT 
side effects are the main concern of patients. 

Remission rate is generally lower in patients with a lower iAF, and 
this was also the case in our samples which led to lower PPVs (as 
reported in the results). In traditional biomarker research where one 
biomarker predicts treatment success or failure, one might consider 
these rather low PPVs insufficiently strong for use in clinical practice. 
However, when considering the idea behind stratification, we see 
how even small improvements can be clinically meaningful and valu-
able (Arns et al. 2022). Instead of denying someone a treatment based 
on an unfavorable prediction, the stratification approach assigns in-
dividuals to one of several evidence-based and commonly prescribed 
treatments based on their worst or best chances to remit. This means 
that compared to the alternative one-size-fits-all approach, no harm 
is done by using stratification (for a more in-depth explanation, see 
(Arns et al. 2022)). 

In this manuscript, we present a stratification solution for diffi-
cult-to-treat depression, based partially on previous findings (e.g. 
for 10 Hz) but enhanced by additional recommendations for the best 
treatment option (of several common interventions) for the low and 
high decile subgroups. 

We, moreover, suggest that Brainmarker-I might have potential to 
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inform matched stepped care by suggesting a better chance to remit 
to sertraline as a first-line treatment for patients in the low decile 
subgroup, and to ECT for the same group after sertraline treatment 
has failed.

When combining all brain stimulation findings and following the 
tested and validated stratification scheme, the already high remission 
rate of 53% improved to 65%, an effective increase of 12%, with an 
NNT of 9, which means that 9 patients need to be treated with the 
biomarker-recommended treatment to have one more patient remit 
compared to active treatment prescribed in an arbitrary way. This 
NNT is close to the effect of tricyclic antidepressant and SSRI mono-
therapy (minimum NNT=7) (Arroll et al. 2009) compared to placebo. 
This is rather impressive, considering that the simulated stratified 
remission rate was not compared to a non-active control treatment 
but rather to active treatment, meaning it reflects the added effect of 
biomarker-based stratification.

Since the focus of the present article is treatment stratification, asso-
ciations between iAF and outcomes outside the context of stratifica-
tion were not tested and the presented biomarker was not developed 
in the classical sense, validated on specificity and sensitivity. Instead 
the aim was to determine correlates that help decide between sev-
eral evidence-based treatments, enriching treatment decision with 
a brain-based parameter to be considered in the context of other 
determining factors, such as treatment history or contraindications. 
We acknowledge that treatment prescription is often bound by 
healthcare policies. The biomarker presented here is therefore only 
meant as a tool for the treating physician that aids to inform treat-
ment prescription with the final prescription lying with the physician 
in consultation with the patient. 

The present manuscript is subject to some limitations. Remission 
was evaluated by different depression scales across different datasets. 
However, all remission cut-off criteria used, except for the 17-item 
Hamilton Rating Scale for Depression (HRSD-17), were in line with 
the criteria proposed by Riedel et al. (Riedel et al. 2010). Similarly, 
EEG parameters and amplifiers differed across collection locations, 
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resulting in a total of 6 different EEG systems included. During pre-
processing, all data were matched to our own datasets as closely 
as possible. For the purpose of detecting the alpha peak in frontal 
electrodes, all EEG data complied with our requirements. Moreover, 
consistent findings in spite of heterogeneity in acquisition systems 
highlight the robustness of the biomarker.

The original ECT dataset was small (N=19) and had an unusually low 
remission rate (26%) compared to standard ECT remission due to a 
highly heterogeneous, comorbid patient profile. However, since we 
successfully replicated our ECT finding in a larger unseen dataset 
with a remission rate considered normal for ECT, we assume that the 
small sample size and low remission rate did not affect our finding. 
One noticeable feature of Brainmarker-I is that iAFs are not even-
ly distributed across the 3 stratification subgroups (see Supplemen-
tary Table S4.3). Approximately 40-50% of the patients fall into the 
asynchronous decile 1-5 subgroup while the 10 Hz-synchronous and 
asynchronous higher decile (6-10) subgroup make up the remaining 
50-60%. One reason is that an iAF of 9.8Hz is already considered 
to fall in the upper alpha range, i.e., fast alpha (Sauseng et al. 2005), 
making the synchronization marker (9.6-10.4  Hz) overlap more with 
the higher decile subgroup. 

One limitation linked to the use of a normalized PPV is that it de-
pends on the prevalence of the biomarker in the total group, since a 
high remission rate in the biomarker subgroup will contribute more 
to the total remission rate, the more prevalent that biomarker is in 
the total group. 

On the other hand, due to the rather prominent differences in remis-
sion rate between datasets, mentioning only the PPV in itself would 
also be biased, with a higher remission rate almost automatically re-
sulting in a higher PPV.

Lastly, the high heterogeneity between datasets and their clinical 
nature complicated assessing other clinical or cognitive variables. 
Brainmarker-I per definition controls for age and sex, secondary anal-
yses showed no differences in baseline severity between subgroups in 
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all datasets, and the results were validated in heterogeneous clinical, 
previously unseen datasets, thereby confirming the robustness of the 
biomarker across changing variables. Nonetheless, it cannot be ruled 
out that other factors could have influenced or mediated the present-
ed findings. 

More systematic research is required in the future to examine the 
link between the introduced biomarker and other cognitive and 
clinical factors, and to examine whether adding such variables to the 
biomarker recommendation could potentially improve treatment 
stratification. 

CONCLUSIONS

In conclusion, we hereby present a clinically actionable transdiagnos-
tic treatment stratification EEG-biomarker that can successfully as-
sign patient subgroups to various ADHD and MDD treatments, and 
is ready to be implemented in clinical practice. 

METHODS

DATA COLLECTION AND PREPROCESSING

EEGs for Dataset-2, -3, -4 and -6 were recorded in a standardized man-
ner in accordance with Brain Resource Ltd. (Arns et al. 2016). In short, 
brain activity was measured from 26 channels of the 10-20 electrode 
international system (Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, FCz, FC4, T7, C3, 
Cz, C4,  T8, CP3, CPz, CP4, P7, P3, Pz, P4, P8, O1, Oz, O2; Quikcap, Nu-
Amps) with a ground at AFz. Measurements consisted of 4-minute rest-
ing-state recordings (2-minutes eyes-open (EO), 2-minutes eyes-closed 
(EC)). Sampling frequency (FS) was 500Hz and a low-pass filter with an 
attenuation of 40 dB per decade above 100Hz was applied prior to dig-
itization. Horizontal and vertical eye-movements were recorded with 
electrooculography (EOG) electrodes (VEOG upper and lower, HEOG 
left and right) and skin resistance was kept <10 kµ for all electrodes. 
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Artifact rejection was performed with a fully-automated, custom Py-
thon package (Hunter 2007; Virtanen et al. 2020; Harris et al. 2020; 
The Pandas development team 2020). 

In short, bipolar EOG was removed from the EEG signal using Grat-
ton (Gratton, Coles, and Donchin 1983). A band-pass filter between 
0.5 and 100Hz was applied and the notch-frequency of 50Hz was re-
moved. The following artefacts were detected and removed: electro-
myography, sharp channel-jumps (up and down), kurtosis, extreme 
voltage swing, residual eyeblinks, electrode bridging and extreme 
correlations. If more than 66% of a channel’s signal was artefactual, 
it was repaired using a Euclidian distance weighted average of at least 
3 neighboring channels. If neighboring channels were not available 
due to artefactual data, the channel was removed. Very artefactual 
data was excluded based on visual inspection.  

For full details on preprocessing, see van Dijk et al. (van Dijk et al. 
2022). The Python code used for processing the EEG and calculating 
the iAPF is freely available for download at https://brainclinics.com/
resources/. 

Data cleaning and artefact rejection for datasets 1, 5 and 7 were per-
formed in Brain Vision Analyzer version 2.2.0 (Brain Products GmbH, 
Gilching, Germany) by semi-automatic removal of epochs with signal 
amplitudes >150mV.

For Dataset-1 (EMBARC) (Pizzagalli et al. 2018) different EEG acqui-
sition systems were used across different sites, leading to different 
numbers of electrodes (60-128) and FS (250/256). EEGs from all EM-
BARC locations were down-sampled to the lowest FS (250Hz), and 
electrodes were adjusted to match the 26 locations listed above. 
ECT Dataset-5 (Kirsten, Seifritz, and Olbrich 2019) was treated ac-
cordingly, resulting in an FS of 200 Hz and 19 channel locations (FC3, 
FCz, FC4, CP3, CPz, CP4, Oz missing).

Similarly, the ketamine Dataset-7 (Meyer et al. 2021) combined 3 differ-
ent studies with different FS and channel locations. Matching them to 
our data resulted in an FS of 500 Hz in two of the studies and 250 Hz in 
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one study (25 patients), and either 18 or 19 channel locations (FC3, FCz, 
FC4, CP3, CP4, CPz, and either Cz or Oz or both missing).

In line with Voetterl et al (Voetterl et al. 2022), the primary outcome 
measure for all datasets was remission - defined as a score of ≤12 on 
the Beck Depression Inventory-II (BDI-II; for Dataset-2, -3, and -6), 
≤7 on the HRSD-17 (for Dataset-1 and -4), ≤2 on the Clinical Global 
Impression ratings (CGI; Dataset-5), and ≤7 on the Montgomery-As-
berg Depression Rating Scale (MADRS, Dataset-7). These were in line 
with remission as defined by Riedel et al. (Riedel et al. 2010), except 
for the HRSD-17 cut-off which was based on the original sertraline 
study (Arns, Gordon, and Boutros 2016), as the aim was to replicate 
this finding.

BIOMARKER DEVELOPMENT

Brainmarker-I for MDD is based on the same previously reported 
EEG-biomarker for ADHD (Voetterl et al. 2022). The biomarker was 
developed in a large heterogeneous clinical dataset (TDBRAIN+; 
N=4249). A subset of the data, the open access TDBRAIN dataset (N 
= 1274; two decades brainclinics research archive for insights in neu-
rophysiology), is freely available at http://www.brainclinics.com/re-
sources (van Dijk et al. 2022) after login, with all data recorded at Re-
search Institute Brainclinics (Brainclinics Foundation, Nijmegen, The 
Netherlands). In addition, the data is available on the data repository 
Synapse at www.synapse.org/TDBRAIN (https://doi.org/10.70303/
syn25671079).

EEG (pre-)processing, as well as conditions and montages employed, 
often differ considerably across studies which can hinder replication 
of findings and thereby implementation of biomarkers in clinical 
practice. In Voetterl et al (Voetterl et al. 2022), a standardized pro-
cessing pipeline was developed by making use of a biological ground 
truth, the maturation (speeding up) of the iAF during childhood and 
adolescence. 

In short, EEGs without measurable alpha oscillations, so called 
low-voltage alpha (LVA) EEGs, were identified and excluded from 
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further processing since an alpha peak cannot be determined in these 
data. Subsequently, 108 processing parameter permutations, compar-
ing reference montage, condition, segmentation and topographical 
location, were tested against iAF maturation in 1671 children and ad-
olescents aged <18 years. Curve fitting was performed for males and 
females separately to find the mathematical model that most closely 
represented the brain-maturation effect. The permutation resulting 
in the highest correlation between iAF and age was used for the sub-
sequent analyses. 

Divergence values were calculated for each individual by subtracting 
from the individual’s iAF the model-predicted iAF for the individual’s 
sex and age, with a negative divergence score reflecting an iAF that is 
slower than the mean at that age and sex. The divergence values of 
the full dataset of >4000 individuals were sorted and divided into 10 
equal-sized bins which denote the deciles used for assignment to the 
different subgroups later. For a more detailed description of the LVA 
and biomarker discovery, see Supplementary Discussion S2 and S3.

The iAF for all treatment datasets was determined by calculating the 
Fast Fourier Transform of the preprocessed resting-state eyes-closed 
EEG data, segmented into 5s and re-referenced to an average reference, 
based on previous literature (Voetterl et al. 2022; Corlier et al. 2019).

The highest peak within the frequency range of 7 to 13Hz was iden-
tified at the 10-20 EEG system locations F3 and Fz, in line with pre-
vious predictions (Corlier et al. 2019; Roelofs et al. 2020; Voetterl et 
al. 2022). Participants with missing clinical data, insufficiently clean 
EEG data and EEGs with LVA were excluded. The resulting values 
were divided into decile scores, according to the cut-off values deter-
mined in the large TDBRAIN+ dataset. Treatment predictions were 
made based on low (decile 1-5) or high deciles (decile 6-10) in the Fz 
electrode. See Fig. 4.1 for an example. 

Additionally, to account for the association between an iAF close to 
10 Hz and 10 Hz rTMS, a synchronization indicator was introduced, 
which denotes an iAF around the stimulation frequency of 10 Hz 
at the F3 location (Fig.4.1). To determine the optimal range for this 
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third biomarker subgroup, we tested different cut-off values that 
were equidistant from the 10 Hz frequency. Due to the frequency 
resolution of 0.2Hz, a result of data segmentation, the possible op-
tions were restricted. 

Ranges tested were 9.4-10.6 (49% of individuals), 9.8-10.2 (22% of in-
dividuals) and 9.6-10.4 (30% of individuals). The range of 9.6-10.4 Hz 
encompasses approximately a third of the individuals in the dataset 
and therefore resulted in the best ratio of patients falling into this 
range and prediction accuracy. 

Since this range overlaps with the low and high decile subgroups, 
patients falling into the synchronization range were excluded from 
the low and high decile subgroups, to obtain 3 distinct subgroups.
The automated algorithm described in Voetterl et al (Voetterl et al. 
2022) was used to calculate iAF and decile scores for individuals of all 
datasets (Fig.4.1.).

STATISTICS

Positive predictive values (PPVs) indicate the remission rate within 
the subsample of patients that Brainmarker-I would have stratified to 
the respective treatment. A normalized PPV (nPPV) was calculated to 
be able to compare predicted remission rates of different datasets, us-
ing the formula (m/w-1)×100  (m=PPV; w=observed sample remission 
rate). In short, the respective remission rate of each dataset was set 
to 100% and the increase or decrease after stratification in relation to 
these 100% was calculated. 

Finally, NNT was calculated, which determined how many patients 
need to be treated according to Brainmarker-I stratification to get 
one more remitter compared to treating patients with the same ac-
tive treatments but in an arbitrary fashion.

Biomarker calculation was conducted in Python, using modules 
numpy (Gramfort et al. 2013), pandas (The Pandas development team 
2020), and scipy (Virtanen et al. 2020). All other statistical analyses 
were performed in IBM SPSS Statistics for Macintosh, Version 27.0.
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DATASETS

Datasets used in this study are shortly described below. Full details of 
the samples can be found in their respective published primary pa-
pers. Basic information about the different datasets is summarized in 
Table 4.1 and Table 4.2. All studies were approved by their respective 
IRBs (with ethical approval numbers available in the primary publi-
cations of the studies).

DATASET-1: EMBARC SERTRALINE

The EMBARC data were pre-collected data that were specifically re-
quested for secondary analyses (for information on ethical approval, 
CONSORT diagrams, study protocol and participant inclusion, we 
would like to refer the reader to the relevant references) (Pizzagalli 
et al. 2018; Trivedi et al. 2016). The study was approved by the insti-
tutional review boards of all study sites (University of Texas South-
western Medical Center, Columbia University/Stony Brook, Mas-
sachusetts General Hospital, University of Michigan, University of 
Pittsburgh, and McLean Hospital). All participants provided written 
consent for the original study from which the data has been used and 
received financial compensation. Between July 29, 2011, and Decem-
ber 15, 2015, outpatients were recruited at 4 sites: Columbia Univer-
sity, New York; Massachusetts General Hospital, Boston; University 
of Michigan, Ann Arbor; and University of Texas Southwestern Med-
ical Center, Dallas. 296 participants were randomized to sertraline or 
placebo, administered for 8 weeks, and then assessed for treatment 
response (defined as ≥50% reduction in HRSD-17 scores). The study 
design stipulated responders to remain on the same drug regimen, 
and to switch non-responders to a different medication (sertraline 
for placebo non-responders and bupropion for sertraline non-re-
sponders) for the next 8 weeks. 

We used these data to conduct a blinded out-of-sample validation 
analysis, with the directed hypothesis that patients with a low decile 
score would be more likely to achieve remission to sertraline but not 
placebo. We first inspected the nPPV for sertraline and placebo at the 
primary endpoint (week 8), respectively. As a secondary analysis, we 



107

calculated nPPVs after prolonged sertraline or placebo administra-
tion (week 16). 

DATASET-2 AND -3: RTMS

Dataset-2 and -3 are open-label, clinical datasets comprised of patient 
data collected at multiple outpatient mental health care clinics in 
the Netherlands (neuroCare Clinic Nijmegen, neuroCare Clinic The 
Hague, and Psychologenpraktijk Timmers Oosterhout) between May 
2007 and November 2016 (dataset-2) and December 2016 and June 
2022 (Dataset-3). These studies were not reviewed by an independent 
ethics committee. Each patient provided written informed consent 
for data use prior to collection of the EEG data. In rTMS Dataset-2 
196 MDD patients received 10 Hz rTMS over the L-DLPFC or 1 Hz 
rTMS over the R-DLPFC (at 120% resting motor threshold, 1500 or 
1200 pulses, respectively) concurrent with psychotherapy (Roelofs et 
al. 2020). In rTMS Dataset-3, 39 patients received only 1 Hz R-DLPFC 
stimulation and psychotherapy. All other parameters were the same 
as in rTMS Dataset-2.

DATASET-4 AND -5: ECT

ECT Dataset-4 comprises data from the Study on Neuroimaging pre-
dictors of Outcome in ECT Patients (SNOEP) which was approved 
by Rijnstate Hospital and the medisch-ethische toetsingscommis-
sies (METC) Arnhem/Nijmegen. Patients who were referred for ECT 
treatment at Rijnstate hospital between August 2016 and June 2022 
were included. All patients provided written consent for the original 
study from which the data has been used prior to study start. Since 
these data were collected as part of a clinical trajectory, participants 
did not receive financial compensation. Thirty-nine outpatients with 
MDD were treated with ECT, 19 of whom had complete EEG and 
outcome data. Fourteen received bifrontotemporal (BL) stimulation 
and 5 right unilateral (RUL; according to d’Elia (D’Elia 1974)) stimu-
lation with stimulus dose relative to seizure threshold (SDRST; i.e., 6 
times seizure threshold [ST] in RUL and 2.5 times ST in BL ECT) and 
using 0.5 ms pulse width (PW). Resting-state EEG data and HRSD-17-
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score were collected prior to ECT and two weeks post-ECT-course.

ECT Dataset-5 comprised data of 60 patients who underwent ECT 
treatment at University Hospital Zurich between 2006 and 2015. This 
study was not reviewed by an independent ethics committee. All par-
ticipants provided written consent for the original study from which 
the data has been used. Since these data were collected as part of 
clinical treatment, participants received no financial compensation. 
As part of clinical treatment, patients were treated with 6-12 sessions 
of bifrontal ECT (PW=0.5ms, SDRST=1.5 of ST) (Kirsten, Seifritz, and 
Olbrich 2019), with outcome analyzed by CGI.

STRATIFICATION BETWEEN BRAIN STIMULATION TECHNIQUES

Discovery analyses were conducted for brain stimulation techniques 
except for the 10 Hz rTMS prediction since the direction of effect was 
informed on previous findings. Since this finding has already been in-
dependently replicated (Roelofs et al. 2020), no blinded out-of-sam-
ple validation was conducted. Instead, in Dataset-2, remission was 
predicted in patients with an iAF in the synchronization range (iAF 
between 9.6-10.4) who had received 10 Hz rTMS. 

For 1 Hz and ECT datasets, all possible directions of effect were test-
ed, i.e., low decile score (1-5) excl. synchronization range, synchro-
nization range, and high decile (6-10) excl. synchronization range. 
Potential findings were subsequently evaluated in blinded, out-of-
sample validations in rTMS Dataset-3 and ECT Dataset-5.

Lastly, we conducted a simulation for stratification between brain 
stimulation interventions. 

Since patients were not evenly distributed across the different sub-
groups (low decile, synchronization and high decile), we first deter-
mined the percentage of patients that can be expected to be stratified 
to each subgroup based on all our rTMS and ECT datasets. Subse-
quently, we used these percentages to calculate the weighted aver-
age of the PPVs that were previously determined for each treatment. 
The resulting PPV and nPPV were the expected remission rate and 
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normalized remission rate following stratification to rTMS and ECT 
with Brainmarker-I.

DATASET-6 AND -7: EXPLORATORY ANALYSES - PSYCHOTHERAPY, KET-

AMINE AND BUPROPION

Dataset-6 comprised patient data from three outpatient mental 
health care clinics (Synaeda Leeuwaarden Fonteinland, Synaeda 
Drachten, Synaeda Heerenveen), and was therefore not reviewed by 
an independent ethics committee. Each patient provided written in-
formed consent for data use prior to EEG and treatment start. Since 
these data were collected as part of clinical treatment, participants 
received no financial compensation. 
Approval for all three ketamine studies used in Dataset-7 was ob-
tained from the Ethical committee of Prague Psychiatric Centre/Na-
tional Institute of Mental Health, Czech Republic prior to patient 
enrollment. Outpatients were recruited for study participation at 
Prague Psychiatric Centre, Czech Republic between 2010 and 2022. 
All patients provided written informed consent. No financial com-
pensation was offered (for more information on ethical approval, 
study protocol and participant inclusion, we refer the reader to the 
relevant trial registration and reference (Meyer et al. 2021)).
Exploratory analyses were performed in Dataset-6 for psychotherapy 
(Meijs et al. 2022), in Dataset-7 for ketamine treatment and in Data-
set-1 for the subgroup of sertraline non-responders, switched to Bu-
propion (N= 54) in accordance with the previous analyses, however, 
without a guided hypothesis. Datasets are described in more detail in 
Supplementary Discussion S4.
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Clinical trials registration: Establishing Moderators and Biosigna-
tures of Antidepressant Response for Clinical Care for Depression 
(EMBARC). Identifier: NCT01407094. URL: http://clinicaltrials.gov/
show/NCT01407094.

QEEG cordance and EEG connectivity changes after administra-
tion of subanesthetic ketamine doses in depressive disorder pa-
tients. URL: https://www.clinicaltrialsregister.eu/ctr-search/tri-
al/2009-010625-39/CZ.

The Role of mTOR (Mammalian Target of Rapamycin) Signaling 
Pathway in the Antidepressive Effect of Ketamine in Patients with 
Depressive Disorder. URL: https://www.clinicaltrialsregister.eu/ctr-
search/trial/2013-000952-17/CZ.

Clinical and neurobiological predictors of response to ketamine: to-
wards personalized treatment of depression. URL: https://www.clin-
icaltrialsregister.eu/ctr-search/trial/2018-001539-39/CZ.

DATA AVAILABILITY 

The TDBRAIN EEG data is freely available for download at https://
brainclinics.com/resources/.  The EMBARC dataset is available from 
the National Institute of Mental Health Data Archive (https://nda.
nih.gov/edit_collection.html?id=2199). Other data are available from 
the corresponding author on reasonable request. Since these data 
were kindly shared with us by collaborators and due to the provided 
consent by participants of the respective studies, we are not at liberty 
to make these accessible in a repository.

CODE AVAILABILITY 

The Python code used for processing the EEG and calculating the 
iAPF was custom-made for this study and is freely available for 
download at https://brainclinics.com/resources/. 
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SUPPLEMENTARY MATERIAL

Supplementary Table S4.1.1. Full sample remission rate per dataset. Remission rate Data-
set-1 (EMBARC) for all treatment arms.
SER= Sertraline, BUP= Bupropion 

Week

Treatment

Remission
rate

8

Placebo

31%

8

SER

42%

16

Placebo

84%

16

SER

72%

16

SER-BUP

35%
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Supplementary Table S4.1.2. Remission rates remaining datasets.
rTMS = repetitive transcranial magnetic stimulation, ECT = electroconvulsive therapy

Supplementary Table S4.2 full results discovery analyses in Dataset-2 and -4.Discovery 
analyses were conducted for rTMS and ECT, calculating remission rates and normalized 
remission rates (PPV/nPPV) in all different biomarker subgroups, i.e. the low decile (decile 
1-5) subgroup, the SYNC subgroup (9.6-10.4 Hz), and the high decile (decile 6-10) subgroup. 
rTMS = repetitive transcranial magnetic stimulation, ECT = electroconvulsive therapy, PPV 
= positive predictive value, nPPV = normalized positive predictive value

Dataset

Sample size (N)

Treatment

Remission
rate

2

74

10 Hz rTMS

60%

2

113

1 Hz rTMS

53%

3

39

1 Hz rTMS

43%

4

41

ECT

26%

5

51

ECT

61%

6

156

Psychotherapy

30%

7

81

Ketamine

26%

Dataset

2

2

4

Treatment

10 Hz rTMS

1 Hz rTMS

ECT

Low decile
subgroup
(PPV/nPPV)

52 (-14%)

45 (-14%)

36 (+38%)

SYNC
subgroup
(PPV/nPPV)

77 (+29%)

58 (+9%)

0 (-100%)

High decile
subgroup
(PPV/nPPV)

53 (-12%)

60 (+14%)

17 (-37%)
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Supplementary Figure S4.1. Results of the Exploratory Analyses.
Normalized PPV for low decile subgroup (blue) vs high decile subgroup (grey) for psychother-
apy (any), ketamine and bupropion treatment. 
Only part of Dataset-1 went into the analysis for bupropion, namely patients who did not 
respond to 8 weeks of sertraline administration (with response defined as ≥50% reduction in 
the 17-item Hamilton Rating Scale for Depression (HRSD-17) scores) and were subsequently 
switched to bupropion treatment. PPV= positive predictive value

SUPPLEMENTARY DISCUSSION S4.1. SIDE EFFECTS ECT  

At the moment of the analysis, only side effect data from the ECT 
Dataset-5 were available. 

The capacity of Brainmarker-I to predict which patient will have no 
side effects after ECT treatment was tested in the same way as treat-
ment outcome was tested. Positive predictive values (PPVs) were cal-
culated for patients falling into the low decile range compared to 
patients falling into the high decile range. The occurrence of side ef-
fects was high, with only 36% of patients experiencing no side effects. 
The PPV in the low decile range was 44% (nPPV= +24%) compared to 
a PPV of 25% (nPPV= -30%) in the high decile subgroup. This means 
that people who are more likely to respond to ECT treatment, ac-

100%

+19%

–20%

–2%

+1%

–1%

+1%

Psychotherapy Ketamine Bupropion

CORRECT
ALLOCATION

INCORRECT
ALLOCATION

no
rm

ali
ze

d P
PV

DATASET
6

DATASET
7

DATASET
1
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cording to Brainmarker-I, are also more likely to experience no side 
effects. Although very promising and of high clinical relevance, this 
finding requires replication in an independent dataset. 

Supplementary Table S4.3. Distribution of biomarker subgroups across main datasets.
rTMS = repetitive transcranial magnetic stimulation, ECT = electroconvulsive therapy

Dataset

1

1

1

1

2

2

3

4

5

Treatment

Sertraline 
(8 weeks)
Placebo 
(8 weeks)
Sertraline 
(16 weeks)
Placebo 
(16 weeks)
10 Hz rTMS

1 Hz rTMS

1 Hz rTMS

ECT

ECT

Subgroup
Low decile

41.6%

38.3%

42.6%

37.5%

42.6%

47.3%

40.5%

57.9%

54.3%

Subgroup
SYNC

31.5%

40.2%

36.2%

37.5%

32.4%

30.4%

37.8%

10.5%

28.3%

Subgroup 
High decile

27%

21.5%

21.3%

25%

25%

22.3%

21.6%

31.6%

17.4%
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SUPPLEMENTARY DISCUSSION S4.2. ABSENCE OF ALPHA OSCILLATIONS

We previously developed a method of determining low-voltage alpha 
(LVA) in data based on the linked-mastoid (LM) reference montage 
(Voetterl et al. 2022). The individual alpha peak frequency (iAF) calcu-
lated with the LM montage led to a slightly higher correlation with age 
for children (6-18yrs.) as compared to iAF based on the average refer-
ence (AR) montage (= 0.12 vs =0.11). However, for adults the opposite 
was true (LE: =0.05 vs AR: = 0.06), i.e., the AR reflected most of the 
variance in iAF related to age, hence in the current study which focuses 
on an adult population, this reference montage was a priori selected. In 
addition, for the 10-Hz TMS SYNC findings, the necessity of using an 
AR has already been demonstrated before (Corlier et al. 2019).

We therefore recalculated the LVA threshold based on the AR, in the 
same way as the threshold was determined for an LM montage (Voet-
terl et al. 2022). 

The average spectral power value in the alpha range (7-13 Hz) was 
determined with the Fast Fourier Transform (FFT) in all 3 electrodes 
(Fz, Pz, Oz) for each individual and subsequently log-transformed. 
The z-score of -1.96 in Pz, i.e., the lowest 5% of the log-transformed 
spectral alpha power, marked the threshold for insufficient alpha 
power. This value was validated by visually inspecting 1% of the re-
cordings above and below this threshold for alpha oscillations. When 
the spectral power value in an electrode fell below this threshold the 
data of this electrode was discarded. 

The resulting log amplitude threshold was 12.3. Applying this threshold 
led to 5% of data being discarded at 10-20 EEG system electrode Fz.

In light of the fact that different amplifiers lead to different voltage 
gains of the signal, the LVA threshold needed to be adapted accord-
ing to the amplifier used. As several datasets (EMBARC Dataset-1, 
ECT Dataset-5 and ketamine Dataset-7) recorded data with a differ-
ent amplifier from the one we used, we determined new LVA thresh-
olds for these datasets in line with the previous calculation. 
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SUPPLEMENTARY DISCUSSION S4.3. BIOMARKER DISCOVERY PHASE

In Voetterl et al (Voetterl et al. 2022), a total of 108 algorithm per-
mutations were tested with 1) condition (eyes closed (EC), eyes open 
(EO) or EC-EO Difference (Diff)), 2) choice of segmentation length 
(2-7s), 3) montage (linked-mastoids (LM), average reference (AR)), and 
4) topographical location (channel location Fz, Pz, Oz). 

A decision on segment length was made based on 1) the strength of the 
correlation and 2) the number of subjects retained for each segment 
length and averaged across reference (LM and AR), and conditions (EC, 
EO, Diff) for all 3 electrode locations (Fz, Pz, Oz) separately. The choice 
of reference montage was based on the highest iAF age correlation for 
the age range of interest, i.e., subjects above the age of 18. 

In a post hoc analysis, comparing reference montages between chil-
dren (age 6-18 yrs.) and adults, the iAF determined with a LM refer-
ence montage led to a slightly higher correlation with age for chil-
dren (6-18yrs.) compared to the iAF determined with an AR montage 
(= 0.12 vs =0.11), while this was reversed for adults (=0.05 vs = 
0.06), i.e., the AR reflected the adult data better.

Correlations and data retention averaged across all segment lengths 
was highest in the EC condition with  between 0.28 (Fz) and 0.34 
(Oz) (except for Oz where the correlation was higher for EO but data 
retention was much lower). Therefore, EC was chosen as the condi-
tion for subsequent analyses. Electrodes Pz and Oz showed the high-
est correlation (Fz second highest) with age (Oz:  of 0.34) for a seg-
ment length of 5s (with condition EC and averaged across reference 
montages) while data retention was highest for 5s segment-length in 
all 3 electrode sites (97%). The strongest overall correlation between 
age and iAF for both reference montages for 5s segment length and 
condition EC was found in electrode Oz. Since this correlation was 
slightly higher in LM than in AR (= 0.34 vs = 0.33), and data reten-
tion was the same (97% across all electrodes) for both LM and AR, 
LM was chosen as primary reference montage. All 3 electrode loca-
tions were examined in further prospective biomarker testing. 
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GraphPad Prism (GraphPad Software, La Jolla California USA, www.
graphpad.com) was employed in the full TD-BRAIN+ data to find the 
mathematical model that most closely approximates the brain-mat-
uration effect. In line with previous evidence (van Dinteren et al. 
2014), a log Gaussian fit determined separately for males and females 
and for each electrode location most appropriately followed the data 
(males: r2 = 11.9% (Oz); females: r2= 12.6% (Oz)) and continuously 
outperformed the linear model (H0; p <1x10-15). Normalized iAF val-
ues for each individual (divergence values), derived by subtraction of 
the model-predicted iAF from the real iAF, scattered around 0. 

In order to validate the use of a clinical instead of a normative data-
set, the full curve fitting procedure in GraphPad prism, specified 
above, was repeated in a normative dataset (Gerrits et al. 2019). Sub-
sequently, in a comparison of fit both the normative and the clin-
ical curve fit were applied to both the normative and clinical data 
separately and the fit was compared. Comparing the curve fit of the 
clinical TD-BRAIN+ dataset with the curve fit specific to a norma-
tive dataset (Gerrits et al. 2019) in GraphPad prism, indicated that 
the parameters of the clinical dataset generalized significantly better 
(p=0.03) to the normative data than the other way around (p=.21), 
suggesting that the clinical data is better capable of capturing and 
explaining variance.

STATISTICS BIOMARKER DISCOVERY

First, Spearman correlations between the various iAFs resulting from 
different EEG processing combinations and age in subjects below 18 
years (N=1671) were calculated. To determine standardized iAF values 
independent of age, we derived non-linear regression models based 
on the full TD-BRAIN+ dataset that most closely fit the given data for 
each electrode (Fz, Pz, Oz). Different mathematical models following 
the developmental trajectory of the iAF (such as a Log gaussian mod-
el, in line with (van Dinteren et al. 2014)) were contrasted against a 
linear model (null hypothesis) and individually adjusted for females 
and males and for each site (channel). Divergence values represent 
where the individual’s iAF lies compared to the mean iAF at that age 
and sex. These were calculated from the resulting models by sub-
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tracting the model-derived average iAF for each subject’s age from 
the person’s actual iAF. Correlations between divergence values and 
age were conducted to confirm that the age effect had been eliminat-
ed from the data. The resulting divergence values were ranked from 
low to high and divided into 10 equal-sized bins (deciles) to improve 
interpretability by clinicians. 

Curve fitting models were developed in GraphPad Prism version 
8.4.0 for MacOS. Spearman correlations were conducted with Py-
thon modules scipy, and numpy.

All other statistical analyses were performed in IBM SPSS Statistics 
for Macintosh, Version 27.0.

SUPPLEMENTARY DISCUSSION S4.4. METHODS AND DISCUSSION OF EX-

PLORATORY ANALYSES 

For Dataset-6, 175 patients were treated with psychotherapy (94 cog-
nitive-behavioral therapy, 81 other therapy) in a clinical setting. Out-
come was measured post-treatment with the BDI-II. 

For Dataset-7, 81 patients were recruited for three different trials, 
a double-blind, randomized placebo-controlled trial, a single-blind, 
placebo-controlled trial, and an open-label trial. Ethical approval for 
all three studies was obtained from the Ethical committee of Prague 
Psychiatric Centre/National Institute of Mental Health, Czech Re-
public prior to patient enrollment (EudraCT Number: 2009-010625-
39, 2013-000952-17 and 2018-001539-39). 

All patients received ketamine via an intravenous catheter (0.54 mg/
kg within 30 minutes) and outcome was tested with the MADRS 
24hrs, 72hrs, and 7 days post-infusion.

In the exploratory analyses, only for psychotherapy an effect was 
found, with a higher remission rate in the low decile subgroup (nPPV 
= +11%) (see Supplementary Figure S4.1), while there were no effects 
for bupropion or ketamine treatment. This direction of effect for 
psychotherapy is in line with our previous finding of increased like-
lihood of remission to neurofeedback for boys with ADHD who fall 
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in the low decile range, since the therapy-like aspects of multimod-
al-neurofeedback such as clinician-attention are considered to play a 
major role in its mechanism of effect. However, since no replication 
data were available for the exploratory analyses, results need to be 
interpreted with caution and require further replication. 
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ABSTRACT

Both 10 Hz repetitive transcranial magnetic stimulation 
(rTMS) as well as 18 Hz deep TMS (dTMS) constitute effec-
tive, FDA-approved TMS treatment protocols for depression. 

However, not all patients experience sufficient symptom relief after 
either of these protocols. Biomarker-guided treatment stratification 
could aid in personalizing treatment and thereby enhancing im-
provement. An individual alpha frequency (iAF)-based EEG-biomark-
er, Brainmarker-I, can differentially stratify patients to depression 
treatments. For instance, an iAF close to 10 Hz was associated with 
better improvement to 10 Hz rTMS, possibly reflecting entrainment 
of endogenous oscillations to the stimulation frequency. 
Accordingly, we examined whether 18 Hz dTMS would result in bet-
ter improvement in individuals whose iAF lies around 9 Hz, a har-
monic frequency of 18 Hz. 
Curve fitting and regression analyses were conducted to assess the 
relation between iAF and improvement. For treatment stratification 
purposes, correlations with iAF-distance to 10 Hz compared 18 Hz 
dTMS (N=114) to 10 Hz rTMS (N=72). 
We found a robust quadratic effect, indicating that patients with an iAF 
around 9 Hz exhibited least symptom improvement (r2=.126, p<.001). 
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Improvement correlated positively with iAF-distance to 10 Hz (p=.003). 
A secondary analysis in 20 Hz figure-of-eight data confirmed this direc-
tion. A significant interaction of iAF-distance and stimulation frequen-
cy between 10 and 18 Hz datasets emerged (p=.026). 
These results question entrainment of endogenous oscillations by 
their harmonic frequency for 18 Hz, and suggest that 10 Hz and 18 
Hz TMS target different subgroups of depression patients. This study 
adds to iAF stratification, augmenting Brainmarker-I with alternative 
TMS protocols (18 Hz/20 Hz) for patients with a slower iAF, thereby 
broadening clinical applicability and relevance of the biomarker.

DOES 18 HZ DEEP TMS BENEFIT A DIFFERENT SUBGROUP 
OF DEPRESSED PATIENTS RELATIVE TO 10 HZ RTMS?  
THE ROLE OF THE INDIVIDUAL ALPHA FREQUENCY.

INTRODUCTION

Major depressive disorder (MDD) is one of the most prevalent dis-
orders worldwide and carries a tremendous disease burden (Malhi & 
Mann, 2018; World Health Organization, 2008). Although many effec-
tive pharmacological treatments are available, many patients do not 
experience symptom relief despite multiple treatment attempts (Arns 
et al., 2022; Drysdale et al., 2017). Those patients are considered to 
suffer from a difficult-to-treat depression and often move on to other 
treatment options such as repetitive transcranial magnetic stimulation 
(rTMS). Treatment with rTMS is well-researched and shows good ef-
fectiveness at the group level, but a full treatment course is costly and 
time-consuming, and about 40% of patients still don’t experience suf-
ficient symptom relief post-treatment (Arns et al., 2022).
One way to speed up recovery and foster clinical improvement is 
predicting outcome by means of so-called biomarkers, for instance 
patterns measured with resting-state electroencephalography (EEG). 
Many biomarkers have been suggested for rTMS in depression 
(Drysdale et al., 2017; Elbau et al., 2023; Hunter et al., 2017; Wu et al., 
2020), however to the best of our knowledge, none are widely used 
in clinical practice yet. 



127

One approach to personalize treatment that might be particularly 
useful is treatment stratification, which describes the concept of 
identifying the best possible treatment for an individual out of mul-
tiple established treatment options using one or multiple biomarkers 
(Arns et al., 2022). Our group recently introduced a stratification bio-
marker (Brainmarker-I), that is able to differentially predict outcome 
to different treatments for attention-deficit hyperactivity disorder 
(ADHD) (Voetterl et al., 2022) and MDD (Voetterl, 2023). Brainmark-
er-I is based on the individual alpha frequency (iAF) in frontal brain 
areas, a pattern observed in the resting-state EEG that has been in-
vestigated extensively for treatment response (Arns, Drinkenburg, 
Fitzgerald, et al., 2012; Arns et al., 2017, 2018; Corlier et al., 2019; 
Krepel et al., 2020; Roelofs et al., 2020). The iAF is the modal fre-
quency of an individual’s oscillation in the alpha range (7-13 Hz) and 
is considered highly hereditary (Van Beijsterveldt & van Baal, 2002). 
Its relationship with symptom improvement was initially believed 
to be simple, with a slower iAF predicting reduced efficacy of de-
pression treatments in general (Arns, Drinkenburg, Fitzgerald, et al., 
2012; Ulrich et al., 1984). Recent evidence however, suggested a more 
multifaceted relation. Instead of a positive linear relationship, as sug-
gested before, the distance of the iAF to 10 Hz was found to nega-
tively correlate with symptom improvement after 10 Hz rTMS over 
the left dorsolateral prefrontal cortex (DLPFC) (Corlier et al., 2019). 
Corlier et al. hypothesized that this effect might reflect entrainment 
of intrinsic brain oscillations to the frequency of stimulation. This 
finding was independently replicated (Roelofs et al., 2020), while no 
effect of iAF on 1 Hz treatment outcome was found. The Brainmark-
er-I study, however, showed that patients with a higher iAF that was 
not close to 10 Hz, indicated by a high biomarker decile score, had 
a better chance to achieve remission after 1 Hz right-sided DLPFC 
stimulation (Voetterl, 2023). This was successfully replicated in an 
independent sample using a blinded out-of-sample validation. The 
subgroup of patients with a slow iAF (indicated by low decile scores) 
showed low remission rates for both 10 Hz and 1 Hz treatment but 
was found to respond best to ECT treatment which again was suc-
cessfully replicated in a blinded out-of-sample analysis. 
H-coils are a family of electromagnetic coils enabling deeper and 
broader stimulation volumes, relative to traditional figure-of-eight 
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rTMS coils (Zibman et al., 2021), and hence were termed Deep TMS 
coils (dTMS).  Multiple H-coils gained FDA-approval for the treat-
ment of different psychiatric disorders, including the H1-coil for the 
treatment of MDD using 18 Hz stimulation of bilateral prefrontal 
cortices with highest electric field induced over the left DLPFC (Ten-
dler et al., 2016). More recently, 18 Hz rTMS using the H7 coil, which 
induces the strongest electrical field over the medial prefrontal cor-
tex, has been shown to be equally effective for MDD treatment (Zan-
gen et al., 2023). This was advocated by research implicating the dor-
somedial prefrontal cortex as alternative appropriate target to treat 
depression (Downar et al., 2014; Downar & Daskalakis, 2013). 
EEG-power based biomarkers for dTMS have been suggested recent-
ly (Alyagon et al., 2020; Zangen et al., 2023), however, the relation-
ship between alpha peak frequency and symptom improvement after 
stimulation with 18 Hz dTMS has, to the best of our knowledge, nev-
er been tested before. Here, we examined whether iAF has predictive 
potential for 18 Hz dTMS delivered with either the H1 or the H7 coil. 
Although 18 Hz does not fall into the alpha frequency range, it rep-
resents the first harmonic of the 9 Hz frequency. Zmeykina et al. 
showed that phase entrainment not only happened at the individual 
alpha frequency at which TMS pulses were delivered, but also at the 
first harmonic frequency in the beta range (Zmeykina et al., 2020). 
This suggests that stimulating the endogenous frequency in the al-
pha range with TMS pulses at the harmonic frequency (here 18 Hz) 
could lead to a similar entrainment effect (Figure 5.1a). On the other 
hand, Zrenner et al. demonstrated that only the negative peak of the 
μ rhythm - the most prominent oscillation in the sensorimotor cor-
tex (8-12Hz) - represents a high excitability state (Figure 5.1b) (Zren-
ner et al., 2018). Since the 18 Hz harmonic frequency would stimulate 
the same oscillatory cycle of the dominant alpha rhythm at opposite 
phases (see Figure 5.1b lower), and thereby affect at least one state of 
low excitability, it could push the oscillator out of balance.
In line with the first hypothesis that TMS might entrain the endog-
enous underlying frequency of the same rhythm (Corlier et al., 2019; 
Roelofs et al., 2020), we theorized that an iAF around 9 Hz would 
correlate with better response to 18 Hz TMS treatment. To examine 
whether any potential effects are more related to the specific design 
of the H-coils or to the higher stimulation frequency, the same direc-
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tion of effect was tested in a secondary analysis in an independently 
acquired dataset that delivered higher frequency (20 Hz) stimulation 
with a traditional figure-of-eight coil. 

Figure 5.1. Entrainment hypotheses
1a. The first hypothesis states that phase entrainment (grey line) might happen when an en-
dogenous oscillation (lime green line) is stimulated by TMS pulses of the same frequency. It 
has been shown that this entrainment occurs not only at the endogenous frequency but also 
at the first harmonic frequency in the beta range (Zmeykina et al., 2020), suggesting that 
stimulation with a harmonic frequency (here:18 Hz) might also result in phase entrainment. 
1b (upper). However, only the negative peak of the oscillation appears to represent a state of 
high excitability (Zrenner et al., 2018) while the positive peak and the random phase (oscil-
lation slopes) are states of low excitability. 
1b (lower). The second hypothesis therefore suggests that stimulating the endogenous oscil-
lation (lime green line) with its harmonic frequency (e.g., 18 Hz) impacts the same oscillatory 
cycle twice at opposite phases (red and black arrows), thereby affecting at least one state of 
low excitability (red arrows). This might lead to an unbalancing of the oscillator (grey-blue 
line) instead of entrainment. 

States of excitability

10 Hz

State of high excitability
TMS pulse (entrainment/synchronization)
TMS pulse (no entrainment)
Neural oscillation

Oscillation imbalance (as a result of the stimulation)

9 Hz Neural oscillation
18 Hz TMS pulse frequency

Entrainment

1b

1a

9 Hz Neural oscillation
9 Hz TMS pulse frequency

Zrenner et al., 2018
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MATERIALS AND METHODS

DATASET 1 – BRAINSWAY DTMS 18 HZ

In this double-blind, randomized, controlled trial, 114 patients with 
MDD received 24 sessions of 18 Hz rTMS with either the Brainsway 
H1 (mainly left prefrontal stimulation) or the H7 coil (mainly medial 
prefrontal stimulation), and had sufficient clean pre-treatment EEG 
data (Zangen et al., 2023). For the electric field maps of both coils, see 
Tendler et al. (Tendler et al., 2016).
Primary clinical outcome was the change in Hamilton Depression 
Rating Scale 21 score (HDRS-21) following 6 weeks of treatment, to 
quantify symptom improvement and treatment remission. In line 
with Voetterl et al. (Voetterl, 2023) primary outcome was remission, 
defined as <= 7, in accordance with Riedel et al. (Riedel et al., 2010).

DATASET 2 – TD-BRAIN 10 HZ RTMS 

Data from Roelofs et al. (Roelofs et al., 2020) were used to contrast 
the 18 Hz dTMS results to the 10 Hz rTMS results. The exclusion 
criterion for insufficient alpha differed in this previous study, thus 73 
MDD patients (instead of 59) were included, who received an average 
of 21 (at least 10) sessions of 10 Hz rTMS with a figure-of-eight coil. 
The primary outcome measure was remission, defined as <=12 on the 
Beck depression inventory II (BDI-II) (Riedel et al., 2010). 

DATASET 3 – SALIENCE BILATERAL RTMS (20 HZ + 1 HZ)

96 patients (68 female, mean age: 39) with MDD had sufficiently 
clean pre-treatment EEG data and were treated with an average of 
36 (at least 10) sessions of 1 Hz rTMS over right DLPFC (360 pulses, 
120%MT) followed by 20 Hz rTMS over the left DLPFC (1200 pulses, 
120%MT), using MagVenture equipment with a Cool B65 figure-of-
eight coil.
Symptom improvement was measured with the self-rated 30-item In-
ventory of Depressive Symptomatology (IDS), with remission defined 
as a score <=14 (Rush et al., 2005). 
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DATA COLLECTION AND PREPROCESSING

For Dataset-1, 5 minutes of resting state EEG data (eyes closed) was col-
lected using TMS-compatible 32 (8 sites) or 64-channel (one site) am-
plifiers (TMSi Ltd.), sampled at 2048 Hz (down-sampled offline to 500 
Hz), with an online Cz reference and POz as ground. Impedance was 
kept <10 kΩ for all electrodes. Data was matched as closely as possible 
to the data used for previous Brainmarker-I predictions.
Matching channels to the previously used channel setup resulted in 23 
channels for 111 participants (Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, FC4, T7, 
C3, C4, T8, CP3, CP4, P7, P3, Pz, P4, P8, O1, Oz, O2) and 25 channels for 
9 participants (Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, FCz, FC4, T7, C3, C4, T8, 
CP3, CPz, CP4, P7, P3, Pz, P4, P8, O1, Oz, O2).
Due to low data quality in some recordings, a low-pass filter of 45Hz 
was applied to reduce excess artifacts from 50 and 60 Hz power line 
noise. Artifact rejection was performed with an automated, custom 
Python package (Harris et al., 2020; Hunter, 2007; The Pandas devel-
opment team, 2020; Virtanen et al., 2020), in accordance with previ-
ous deartifacting procedures (Arns, Bruder, et al., 2016; van Dijk et al., 
2022) (full code available under www.brainclinics.com/resources). Data 
was re-referenced offline to an average reference in line with previous 
Brainmarker-I predictions in adults (Voetterl, 2023).

Data of Dataset-2 was recorded in 26 channels of the 10-20 electrode 
international system (Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, FCz, FC4, T7, 
C3, Cz, C4, T8, CP3, CPz, CP4, P7, P3, Pz, P4, P8, O1, Oz, O2; Quikcap, 
NuAmps) with a ground at AFz and an online linked-mastoid refer-
ence. Two minutes of eyes-open (EO) and two minutes of eyes-closed 
(EC) resting-state data were recorded at a sampling frequency of 500 
Hz. Horizontal and vertical eye-movements were measured and skin 
resistance was kept <10 kΩ for all electrodes. The same artifact rejec-
tion procedure was followed as in Dataset-1 (see above), and data was 
re-referenced to an average reference. 

Dataset-3 was recorded using 21 channels (Fp1, Fp2, F7, F3, Fz, F4, F8, 
T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, O2, M1, M2; Brainview EEG-21 
Pro) with a ground at AFz and a CPz reference. Five minutes of EO and 
five minutes of EC resting-state data were recorded. Skin resistance 
was <10 kΩ for all electrodes. Sampling frequency was 500 Hz. A high 
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pass filter of 0.5 Hz was applied as well as a low pass filter of 60 Hz.
Artifact rejection was conducted in Brain Vision Analyzer version 2.2.0 
(Brain Products GmbH, Gilching, Germany) matching the preprocess-
ing steps described above. 

BIOMARKER DEVELOPMENT

Brainmarker-I was calculated in line with the previously reported 
EEG biomarker for ADHD and MDD (for a detailed description of 
the biomarker development see Voetterl (Voetterl et al., 2022)). 
In short, the biomarker was developed in the large heterogeneous, 
clinical TDBRAIN+ dataset (N=4249) of which a part (n = 1274) is 
freely available for download at https://brainclinics.com/resources/ 
(van Dijk et al., 2022). The iAF was determined as the highest peak 
in the alpha range (7-13 Hz) determined by Fast Fourier Transform in 
the cleaned resting-state eyes-closed data at the 10-20 EEG system 
electrode sites F3 and Fz. Participants with insufficient (frontal) alpha 
oscillations were excluded (~5%) and iAFs were age- and sex-normal-
ized. Resulting values were divided into decile scores (Fz) and a syn-
chronization indicator (SYNC) was introduced, marking an iAF be-
tween 9.6-10.4  Hz at the F3 location for stratification to 10 Hz rTMS. 
The automated algorithm described in Voetterl et al. (Voetterl et al., 
2022) was used to calculate iAF, synchronization and decile scores for 
individuals of all datasets.

STATISTICS

Curve fitting (including Loess curve fits) was used to examine the re-
lationship between percent improvement on the HDRS-21 and iAF at 
electrode site Fz, in line with the previous Brainmarker-I analyses that 
were calculated based on this location and the broad electric fields of 
both coils, overlapping this area. An extra sum-of-squares F test com-
pared one shared curve fit for the H1 and H7 datasets with the fit of 
individual curves for each dataset to test whether a potential effect sig-
nificantly differed between the two coil datasets.
Accordingly, regression analyses were conducted for both coils together 
or separately.
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In line with Roelofs et al. (Roelofs et al., 2020), who found a negative 
correlation between the distance of the endogenous iAF to 10 Hz and 
symptom improvement following 10 Hz rTMS treatment, Spearman 
correlation analyses were performed to examine whether there was an 
effect between symptom improvement and iAF distance to 10 Hz. Sig-
nificance levels reported represent two-tailed significance testing for 18 
Hz data and one-tailed testing for 10 Hz data, since this effect has been 
shown and replicated before.
To assess whether there was a difference in effect of distance to 10 Hz 
and symptom improvement between Dataset-1 and Dataset-2, a multi-
ple regression analysis was conducted with the interaction term Data-
set*10 Hz-distance added.  
Positive predictive values (PPVs) that denoted the remission rate in 
each biomarker-classified subsample of patients, were calculated for 
synchronized (around 10 Hz) and non-synchronized groups at elec-
trode location F3, since this is the location that was used for synchro-
nized calculations before (Corlier et al., 2019; Roelofs et al., 2020; Voet-
terl, 2023). PPVs for Brainmarker-I subgroups (i.e., synchronized, high 
decile and low decile subgroups) were based on Fz (in accordance with 
Voetterl et al. (Voetterl, 2023)). PPVs were normalized (nPPV) to make 
remission rates comparable across datasets in line with Voetterl et al. 
(Voetterl, 2023; Voetterl et al., 2022), using the formula (m/w-1)*100 
(with m=PPV and w=observed sample remission rate).

To test whether a potential effect of 18 Hz treatment can be attributed 
to (higher) stimulation frequency, we repeated the same PPV calcula-
tions in a secondary analysis in Dataset-3 which delivered 20 Hz (+1 Hz) 
treatment with a traditional figure-of-eight coil. 
To control for possible confounding factors, we conducted a Krus-
kal-Wallis test assessing whether there were differences between re-
cording sites, with subsequent leave-one-out analyses for each research 
site, repeating the previous regression analyses 8 times (for 8 research 
sites). Possible differences in age between subgroups were tested with 
one-way ANOVAs for each dataset. To examine whether treatment re-
sulted in a change in iAF, a repeated-measures ANOVA was performed 
to assess pre-/post-treatment iAF changes. 
Biomarker calculation was conducted in Python, using modules numpy 
(Harris et al., 2020), pandas (The Pandas development team, 2020), and 
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scipy (Virtanen et al., 2020). GraphPad prism version 9.5.1 for MacOS 
(GraphPad Software, La Jolla California USA, www.graphpad.com) was 
used for curve fitting analyses. All other statistical analyses were per-
formed in IBM SPSS Statistics for Macintosh, Version 27.0.

RESULTS

Since Dataset-1 is the main focus of the paper, all analyses were con-
ducted on these data, unless indicated otherwise. 
Details of all datasets are summarized in Table 5.1. 

CURVE FITTING REVEALS QUADRATIC ASSOCIATION 

Due to insufficient EEG data quality, data of 7 patients was discarded. 
This resulted in 113 resting-state EEG recordings being examined.
Results of the regression analysis are visualized in Figure 5.2. 
Contrary to our hypothesis, Loess curve fits revealed a u-shaped ef-
fect, with a trough between 9 and 10 Hz, indicating least improve-
ment for people with an iAF in this range. A quadratic fit most 
adequately followed the data, and this effect was present for both 
the H1 and the H7 coil, separately. An extra sum-of-squares F test 
showed that this effect did not significantly differ between the two 
coils and that one curve adequately fit both H1 and H7 datasets 
(F(3,102)=0.1718, p=.9152). Thus, all following analyses were conduct-
ed on the data from both coils combined (see Supplementary Figures 
S5.1. for quadratic effect in both coils, separately).

Table 5.1. Basic information for all datasets. (next page)
DBPC = Double-blind placebo-controlled trial; dTMS = deep repetitive transcranial mag-
netic stimulation, rTMS= repetitive transcranial magnetic stimulation, lDLPFC= left dorso-
lateral prefrontal cortex, rDLPFC= right dorsolateral prefrontal cortex, HDRS = Hamilton 
Depression Rating Scale, BDI= Beck depression Inventory, IDS = Inventory of Depressive 
Symptomatology
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QUADRATIC REGRESSION 

A quadratic regression for both coils combined showed that there 
was a significant quadratic effect between iAF at Fz and percent im-
provement on the HDRS-21 (F(2,105)=7.560, p<.001, r2 = .126; Figure 5.2), 
with a trough around 9 Hz.

Figure 5.2. Quadratic effect between iAF and percent improvement
Quadratic curve fit (black) and Loess fit (dark grey) for iAF and percent symptom improve-
ment for H1 and H7 coils combined. 
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RELATION BETWEEN SYMPTOM IMPROVEMENT AND DISTANCE TO 10 HZ 

Due to the regression results revealing potential for differential 
stratification of patients to 18 Hz and 10 Hz stimulation, in line with 
Voetterl et al. (Voetterl, 2023), we focused the remaining analyses on 
the 10 Hz synchronization range (9.6-10.4  Hz) instead of 9 Hz.
In Dataset-1, we found a significant positive correlation between per-
cent symptom improvement on the HDRS-21 and iAF distance to 10 
Hz (rho=.269, p=.005). In line with previous findings, that correlation 
was negative for Dataset-2 (rho=-.208, p=.048).
To verify this stratification potential, we conducted a multiple regres-
sion analysis including an interaction of dataset (18 Hz Dataset-1 vs 
10 Hz Dataset-2) on symptom improvement and iAF-distance to 10 
Hz (Figure 5.3) which yielded a significant regression model (R2=.053, 
F(3,169)=3.168, p=.026). Larger distance to 10 Hz was related to less 
improvement to 10 Hz treatment but better improvement to 18 Hz 
treatment (Beta=-.246, p=.008). The model without the interaction 
term was not significant (F(2,170)=1.143, p=.321). 

Figure 5.3. Visualization of interaction effect between 18 Hz and 10 Hz datasets 
Interaction of Dataset (treatment protocol 18 Hz vs 10 Hz) on percent symptom improve-
ment post-treatment and distance to 10 Hz. With increasing iAF-distance to 10 Hz, symp-
tom improvement decreases for the 10 Hz protocol but increases for treatment with 18 Hz.
HDRS= Hamilton Depression Rating Scale 21, BDI= Beck Depression Inventory
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POSITIVE PREDICTIVE VALUES 

Full results can be found in Supplementary table and material S5.1; 
results for decile-based subgroups are visualized in Figure 5.4. For 
18 Hz TMS, the strongest increment for decile-based subgroups was 
seen in the low decile subgroup (PPV=41%, nPPV=+23%). 
To get an indication whether this quadratic effect for iAF and symp-
tom improvement to 18 Hz dTMS treatment might be related to the 
high stimulation frequency of 18 Hz or whether it is a consequence 
of the dTMS coil design, we repeated the analysis in Dataset-3 (20 Hz 
rTMS with a figure-of-eight coil). Results were similar to Dataset-1, 
with the highest remission rate in the low decile subgroup (PPV=39%, 
nPPV=+23%).

Figure 5.4. Subgroup analyses and Stratification recommendation
Results of the PPV/nPPV analyses of Dataset-1 and -3. The low decile subgroup presented 
with highest remission rates compared to the 10 Hz-synchronized and high decile subgroups. 
Taken together with the previous findings of Brainmarker-I, this suggests stratification of 
the low decile subgroup to 18 or 20 Hz TMS, the 10 Hz-synchronized subgroup to 10 Hz and 
the high decile subgroup to 1 Hz TMS.
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CONFOUNDING FACTORS – DIFFERENCES BETWEEN RECORDING SITES

To rule out effects of recording site in Dataset-1, multiple analyses 
were conducted to examine whether the findings hold across record-
ing sites. Since baseline HDRS-21 and percent change on the HDRS-
21 were not normally distributed for multiple sites and there was het-
erogeneity of variance, a Kruskal-Wallis test was conducted to test 
whether baseline HDRS-21, percent change on the HDRS-21, iAF at 
Fz and age differed significantly between sites. Results showed that 
of these, only baseline HDRS-21 differed significantly between sites 
(χ2(7)= 23.286, p=.002).
We, therefore, conducted leave-one-out analyses for each site, re-
peating the previous quadratic regressions but excluding one site at a 
time. All 8 quadratic regressions remained highly significant (p<.001 
to p=.006).
There were no age differences between biomarker subgroups of all 
datasets (p>.216).
Post-treatment EEG data was only available for Dataset-1. No signif-
icant differences were found between pre- and post-treatment iAF 
(see Supplementary Material S5.2).

DISCUSSION

In a previous study by our lab, we found and optimized an EEG bio-
marker based on the iAF, capable of transdiagnostically predicting re-
mission to different ADHD and MDD treatments (Voetterl, 2023). For 
MDD, Brainmarker-I predicted higher likelihood of remission to ECT 
for patients with a low decile score, i.e., a slow iAF, and to 1 Hz rTMS 
targeting the right DLPFC for patients with high decile scores. More-
over, 10 Hz rTMS targeting the left DLPFC worked best for patients 
with an iAF close to the stimulation frequency of 10 Hz, suggesting 
an underlying synchronization mechanism. In the present manuscript 
we further assessed this synchronization hypothesis in a dataset that 
administered 18 Hz stimulation, by examining the association between 
clinical improvement and an iAF of 9 Hz, a harmonic of the stimula-
tion frequency of 18 Hz. 
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Intriguingly, we found an effect opposite to the entrainment hypothe-
sis for the 18 Hz dTMS Dataset-1, namely a quadratic curve with least 
symptom improvement around 9 Hz iAF, which is opposite to the find-
ing for 10 Hz rTMS. This effect was highly significant with moderate 
effect sizes, was replicated for both H1 and H7 coils, and was stable 
across different research sites.  
These results complement and critically extend the Brainmarker-I find-
ings (Voetterl, 2023), providing a less invasive alternative to the previ-
ously recommended ECT treatment for the low decile subgroup. Al-
though the ECT finding is clinically meaningful, the prospect of more 
severe side effects often keeps patients from pursuing ECT treatment. 
Identifying rTMS protocols that work well for this patient group (i.e., 
supporting a three-way stratification) and lack these unwanted ECT 
side effects is, thus, very valuable.
Unlike the previous Brainmarker-I studies, the 18 Hz Dataset-1 used 
here administered treatment with H-coils which induce a larger elec-
tric field and stimulate larger cortical areas relative to standard figure-
of-eight rTMS coils. This poses the question whether the effect found 
here is related to stimulation frequency or stimulation area. It is con-
ceivable that this low decile subgroup requires a broader stimulation 
which is achievable by either ECT or deep TMS. However, the fact that 
the findings presented here hold for both H1 and H7 coil, and were 
validated in an independent 20 Hz dataset using a traditional figure-of-
eight coil, suggests that coil type might be less relevant than frequency. 
For deep TMS, treatment with 10 Hz frequency has also been shown 
to be effective (Tendler et al., 2018). Despite the replicated quadratic 
effect of 10 Hz and iAF found with a figure-of-eight coil, it remains to 
be shown whether the same effect is present when delivering 10 Hz 
stimulation using an H-coil. The present results, thus, require repli-
cation of the 10 Hz finding in patients treated with an H-coil, as well 
as in patients who received higher frequency stimulation such as 18 
or 20 Hz, delivered with a standard figure-of-eight coil. If successful, 
these findings would further advance and facilitate three-way treat-
ment stratification, by stratifying patients with a 10 Hz-synchronized 
Brainmarker-I to 10 Hz rTMS, patients with higher iAF (high decile 
scores) to 1 Hz TMS (as shown previously(Voetterl, 2023)) and the low 
iAF subgroup to higher TMS frequencies (18 Hz or 20 Hz), independent 
of coil type (Figure 5.4).    
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Although the present study did not systematically investigate neural 
entrainment, the current findings might provide further evidence to 
support the existing literature. The hypothesis that rTMS can en-
train oscillations, has been subject of extensive investigation, with 
good evidence for neural entrainment when stimulation is applied at 
the individual oscillatory rhythm (Leuchter et al., 2013; Thut, Schyns, 
et al., 2011; Thut, Veniero, et al., 2011). For instance, administering 
rhythmic (at the iAF) but not arhythmic or sham rTMS led to an im-
mediate increase in phase alignment of the underlying oscillations 
with the TMS pulses (Zmeykina et al., 2020). That phase synchro-
nization occurred both in posterior alpha rhythms and in their har-
monic in the beta range, albeit to a lesser extent, seems to contradict 
our findings. This discrepancy could be explained by differing states 
of excitability (Zrenner et al., 2018). A slower stimulation frequency 
could entrain the endogenous harmonic frequency by stimulating at 
every second oscillatory cycle, however, a harmonic frequency of the 
dominant alpha rhythm (such as 18 Hz in the present study), would 
stimulate the same oscillatory cycle at opposite phases (see Figure 
5.1b) potentially leading to an oscillator unbalance. 
This is in line with findings that showed that the effectiveness of 
phase-locking (Thut, Veniero, et al., 2011; Zmeykina et al., 2020) and 
corticospinal excitability is phase-dependent (Schilberg et al., 2018, 
2021; Zrenner et al., 2018) and that long-term-potentiation-like plas-
ticity only occurred when the negative peak was triggered but not 
in the positive or random phase (slope of the oscillation) condition. 
This might explain a lack of effect when the oscillatory cycle is trig-
gered at the wrong phase. 

To date there are few studies that examined the relationship be-
tween synchronized TMS (sTMS) and clinical outcome. A large dou-
ble-blind, randomized, sham-controlled trial and a randomized, sh-
am-controlled pilot trial found significantly greater improvement for 
sTMS compared to sham (Jin & Phillips, 2014) and significantly less 
improvement in patients who received sTMS stimulation at the in-
correct iAF (Leuchter et al., 2015). 
These findings suggest that there is strong evidence for the entrain-
ment hypothesis, and that entrainment depends on pre-stimulation 
alpha phase, which could explain our findings and lend support to 
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the hypothesis that stimulation with a faster harmonic frequency 
might not entrain but unbalance alpha oscillators. Since we did not 
test entrainment and phase synchronization systematically, these are 
merely hypotheses, and more research is necessary to corroborate 
this theory and to test whether there is an association with reduced 
clinical improvement. The stratification potential of high frequency 
stimulation as treatment for the low decile subgroup, on the other 
hand, represents a novel finding that has direct clinical implications. 

LIMITATIONS

Data was recorded with different EEG systems and at different re-
cording sites, introducing heterogeneity. Extensive analyses were 
conducted to assess whether the quadratic effect for 18 Hz rTMS on 
percent symptom improvement was affected by differing baseline 
severity at the different recording sites, and showed that the effect 
remained highly stable and significant (all p<.006) across multiple 
leave-one-out analyses. This suggests that no single treatment site 
individually contributed to the presented association.
Since it is unknown whether the quadratic relationship between iAF 
and outcome to 18 Hz treatment is related to the treatment stimu-
lation frequency or to the broader stimulation area of H-coils or to 
both these factors, it is perceivable that the here presented findings 
only hold for dTMS set-ups but not for 18 Hz stimulation adminis-
tered with a standard figure-of-eight coil. Although the finding in 
the 20 Hz rTMS Dataset-3 seems to corroborate the 18 Hz finding, 
suggesting that frequency plays a bigger role than area, the fact that 
patients received bilateral treatment including 1 Hz stimulation 
weakens that argument. 
The present study did not examine other potentially predictive fac-
tors, such as baseline severity since different scales were used to mea-
sure depression severity. The Brainmarker-I study (Voetterl, 2023), 
however, detected no differences in baseline severity between 5 data-
sets. Furthermore, Krepel et al. (Krepel et al., 2019) only found limited 
prediction potential of baseline variables for rTMS response. No age 
differences were found between subgroups. 
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CONCLUSION

Our findings enhance the clinical applicability and relevance of 
Brainmarker-I by suggesting an alternative treatment for ECT for the 
low decile subgroup. 
Despite strong evidence for the entrainment hypothesis, at least 
stimulation at a faster harmonic frequency of the endogenous os-
cillations does not seem to entrain the oscillator but rather have a 
disruptive effect, thereby reducing symptom improvement. These 
results thus suggest that 10 Hz and 18 Hz TMS target different sub-
groups of MDD patients.

SUPPLEMENTARY MATERIAL

Supplementary Figures S5.1. Quadratic effects for H1 and H7 coils separately.
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Supplementary table S5.1 Full subgroup analyses in all datasets. Full subgroup analyses 
were conducted for all stimulation frequencies, calculating remission rates and normalized 
remission rates (PPV/nPPV) in all biomarker subgroups, i.e. low decile (decile 1-5), SYNC 
(9.6-10.4 Hz), and high decile (decile 6-10) subgroup. dTMS= deep transcranial magnetic 
stimulation, rTMS = repetitive transcranial magnetic stimulation, PPV = positive predictive 
value, nPPV = normalized positive predictive value

SUPPLEMENTARY MATERIAL S5.1. POSITIVE PREDICTIVE VALUES 

For 18 Hz TMS, an nPPV of -25% for the 10 Hz-synchronized sub-
group (PPV=25%) and +14% for the non-synchronized subgroup 
(PPV=38%) was found. In Dataset-3 (20 Hz rTMS with a figure-of-
eight coil), results resembled those of Dataset-1, with an nPPV of 
-24% (PPV=24%) in the 10 Hz-synchronized subgroup (i.e. the 20 
Hz-harmonic), and an nPPV of +17% (PPV=38%) in the non-synchro-
nized subgroup. 

SUPPLEMENTARY MATERIAL S5.2. PRE- POST-TREATMENT CHANGES IN IAF

A repeated-measures ANOVA testing differences between iAF (at Fz) 
pre-treatment and post-treatment at group level was not significant 
(F(1,98)=0.000, p=.984). The mean of iAF at pre-treatment was 9.562 
and 9.564 at post-treatment, remaining exceedingly stable. When re-
peating this analysis with remission as between-subject factor, there 
was no interaction between pre-/post-iAF and remission (F(1,97)=0.882, 
p=.350). The mean of remitters was slightly lower at both pre- and 
post-treatment (9.321 and 9.455, respectively) compared to non-re-
mitters (9.682 and 9.618, respectively). The same analysis repeated 
with response as between-subject factor again showed no significant 
interaction or main effects (F(1,97)=0.001, p=.979). As expected, iAF 
remained highly stable from pre- to post-treatment, corroborating 
previous reports of high reproducibility of iAF and the idea of iAF 
representing a trait marker.

Dataset

1
2
3

Supplementary Table S1. Full results subgroup analyses in all datasets

Treatment

18 Hz dTMS
10 Hz rTMS
20 Hz rTMS

Low decile 
subgroup
(PPV/nPPV)
41 (+23%)
52 (-14%)
39 (+23%)

SYNC 
subgroup
(PPV/nPPV)
25 (-25%)
77 (+29%)
24 (-24%)

High decile
subgroup 
(PPV/nPPV)
35 (+5%)
53 (-12%)
35 (+9%)
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DISCUSSION

KEY FINDINGS

The book starts with a general introduction to depression, 
TMS and the need for robust treatment prediction biomark-
ers in Chapter 1.

Depression is a severe and debilitating disorder that is highly prevalent 
and, especially when unsuccessfully treated, can have detrimental ef-
fects on the lives of those affected, one of the most severe effects being 
a heightened suicide risk. Finding the best treatment for the individual 
early on in the course of the illness is therefore crucial. However, de-
spite overall effectiveness of different approved depression treatments, 
a substantial number of patients experiences no or only little symptom 
improvement. With increasing failed treatment attempts, the likeli-
hood of achieving remission diminishes, and after multiple futile treat-
ment courses a patient is considered difficult-to-treat. These patients 
often move on to receive noninvasive brain stimulation, such as rTMS, 
which shows good efficacy at the group level, but still results in a con-
siderable number of non-remitters. One strategy to enhance treatment 
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response is individualizing treatment to the patient, so called precision 
psychiatry. Within the context of precision psychiatry, stratified psy-
chiatry can aid in identifying the best out of multiple approved treat-
ments for a given disorder, for instance by means of imaging biomark-
ers. Throughout the years, a multitude of MRI and EEG markers has 
been examined, however valid criticism has been raised regarding the 
quality of EEG biomarker research, for instance a lack of out-of-sample 
validations, insufficient direct replication, differing processing meth-
ods, and general publication bias, concluding that EEG biomarkers are 
not yet ready for clinical implementation.  

These issues are once more addressed in Chapter 2, which systemati-
cally reviews robustness of imaging biomarkers and compiles the state-
of-the-art of robust imaging biomarkers for depression and TMS. Only 
MRI and EEG biomarker studies with sample sizes of ≥ 88 patients or 
studies that attempted external replication were included, ensuring 
robustness of any potential identified biomarker. In total 18 different 
studies were included per modality, however only 2 MRI and 2 EEG 
biomarkers were identified as robust: network mapping and DLP-
FC-sgACC functional connectivity for MRI, and frontal-midline rACC 
theta and iAF for EEG.

The subsequent 3 chapters contributed to the evidence for the robust-
ness of one of these identified robust biomarkers, the iAF, which had 
already been indicated as predictor of treatment outcome for both 
ADHD and MDD although findings were initially inconsistent. One 
potential reason for the discrepant findings could be attributed to 
differences in methodology utilized across these studies, such as data 
cleaning, which had been one of the points of critique for prior bio-
marker studies.  

Thus, in Chapter 3, EEG processing was first optimized in a large clini-
cal dataset of over 4000 people for optimal detection of the alpha peak, 
by testing and validating 108 different processing permutations, relying 
on the well-known finding that iAF indexes brain maturation (N=4249). 
The resulting biomarker, Brainmarker-I, was then normalized for age 
and sex and tested for treatment stratification in ADHD. It was demon-
strated that Brainmarker-I can successfully stratify boys with a rela-
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tively faster iAF to stimulant medication and those with a slower iAF 
to multimodal neurofeedback treatment (MM-NFB). These findings 
were subsequently replicated in unseen independent datasets through 
blinded prediction of treatment outcome, thereby lending credibility to 
the presented findings and improving on criticism pertaining prior bio-
marker research, as well as demonstrating generalizability to different 
recording hardware and set-ups. Two other treatment options, guan-
facine and atomoxetine, were evaluated, with guanfacine showing a 
similar prediction direction as MPH and atomoxetine as MM-NFB. For 
these two medications, no out-of-sample validations were conducted, 
therefore these findings still require replication.

In Chapter 4, the same iAF-based biomarker was shown to extend to 
depression treatments, first independently replicating the previous 
finding of better response to sertraline for the slow iAF subgroup in 
the EMBARC dataset in first-line depression treatment while proving 
a lack of predictive effect for placebo. For second-line MDD treatment, 
in addition to replicating the previous finding that patients with an iAF 
close to the stimulation frequency of 10 Hz are more likely to remit to 
10 Hz rTMS, higher remission rates were found in a fast-iAF subgroup 
for 1 Hz rTMS and in a slow-iAF group for ECT. These new findings 
were once again replicated in independent, out-of-sample validations 
in a blinded fashion. Lastly, the study explored the biomarker’s strati-
fication potential for psychotherapy, bupropion and ketamine, with a 
trend of better remission to psychotherapy in the slow iAF subgroup 
but no stratification potential for bupropion and ketamine. The finding 
for psychotherapy still requires out-of-sample replication. This com-
plements the fourth chapter, showing that Brainmarker-I represents 
a transdiagnostic treatment stratification biomarker for ADHD and 
MDD. This marker is both easy to collect and to interpret, and, thanks 
to the stratification approach, can be applied without risk, which aids 
in straightforward realization in clinical practice.

In Chapter 5, stratification potential of Brainmarker-I for depression 
was further investigated for deep-TMS administered at a higher stim-
ulation frequency of 18 Hz. This TMS protocol was shown to be a valid 
alternative for the slow iAF subgroup that would have been advised 
ECT treatment before. A successful replication in 20 Hz TMS data that 
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administered stimulation with a figure-of-eight coil - instead of a deep 
TMS coil - suggested a higher relevance of stimulation frequency than 
coil shape, enabling Brainmarker-I stratification between TMS proto-
cols only. Due to its benign side effect profile and outpatient setting, 
rTMS treatment can be considered a less intensive intervention than 
ECT when considering a stepped-care model. This is supported by 
patient preference for TMS before ECT treatment which makes full 
stratification to TMS protocols all the more valuable. Furthermore, it 
enables full implementation of Brainmarker-I at TMS clinics that have 
no means to provide ECT. The same study, furthermore, discusses the 
indication that stimulation with a frequency of 18 Hz might not lead 
to entrainment of endogenous oscillations at the harmonic frequency 
of 9 Hz, and suggests that it might even lead to an unbalancing of the 
oscillators. 

The previous chapters introduce an iAF-based, age- and sex-normalized 
transdiagnostic stratification biomarker for ADHD and MDD, which is 
convenient to measure and calculate and has been directly replicated 
through blinded outcome prediction in independent, unseen datasets. 
The following chapter discusses the implications of such a biomarker.  

THE STRATIFICATION APPROACH 

One important aspect of stratification, that might be considered un-
conventional compared to standard scientific practice, is the more 
pragmatic approach that is adopted with regard to statistical method-
ology (Arns et al., 2023). For instance, the heterogeneity between and 
large volume of different datasets used in the previous chapters neces-
sitated an adjustment of standard accuracy measures. The PPV (also 
called precision) which is part of the customary accuracy test battery 
was normalized for imbalances in base remitter rates between cohorts, 
resulting in a normalized version, the nPPV. Through the principle of 
stratification, described in the introduction, statistical significance is 
less relevant, since the biomarker never discourages a specific treat-
ment for a patient without proposing a more promising alternative. 
Instead, the respective best option out of a number of effective, evi-
dence-based treatments is identified for each patient meaning that a 
stratification biomarker will provide a treatment recommendation for 
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each individual. Hence the capacity to predict non-remission, as oth-
er accuracy measures such as the negative predictive value (NPV) and 
specificity do, does not add substantial value to a stratification marker, 
since a patient will always be assigned an effective treatment (Arns et 
al., 2022). Since significance testing is not based on the PPV or nPPV 
alone, but automatically takes into account other accuracy measures 
(NPV, sensitivity, specificity), the value of these other measures might 
be inflated while that of the measure of interest, the PPV, is discounted. 
This might mean that an increase in remission rate in a biomarker sub-
group is valuable although it does not reach significance (when other 
accuracy measures are considered, too). Blinded out-of-sample valida-
tions are then crucial to ascertain that such non-significant results do 
not represent spurious findings.

As the aforementioned meta-analyses demonstrated, there are no dif-
ferences between the standard stimulation protocols with respect to 
response and remission rates at the group level (Brunoni et al., 2016) 
(however, note that back when this meta-analysis was published newer 
approaches such as accelerated, deep and synchronized TMS were not 
found to be more effective than sham). For the most commonly used 
protocols – high frequency (HF) stimulation over the left DLPFC and 
low frequency (LF) stimulation over the right DLPFC- multiple me-
ta-analyses demonstrated no differences in treatment efficacy (Brunoni 
et al., 2016; Cao et al., 2018; J. Chen et al., 2014; Fitzgerald et al., 2019). 
Similarly, bilateral stimulation, applied simultaneously or sequentially 
over left and right DLPFC, is equally but not more effective than uni-
lateral HF left or LF right stimulation alone (Berlim et al., 2013; J. Chen 
et al., 2014). For iTBS, Blumberger et al. were the first to convincingly 
show that there was no difference in treatment outcome with HF left 
rTMS (Blumberger et al., 2018). Even response rates of less tradition-
al higher frequency protocols such as 5, 18 and 20 Hz did not differ 
from the standard protocols (Filipčić et al., 2019; Leggett et al., 2015; 
T. Zhang et al., 2021). The stratification approach is, therefore, in line 
with the “primum non nocere” (“first, do no harm”) principle, meaning 
that even a “wrong” treatment recommendation would not adversely 
affect a patient since they would still be prescribed an overall equally 
effective treatment. In fact, one might even go as far as to say that the 
worst that could happen when following the stratification approach is 
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to reproduce the status quo of a one-size-fits-all prescription practice. 
Since Brainmarker-I can be determined based on a short resting-state 
EEG measurement and calculated in a straight-forward way, addition-
al effort and cost for patient and clinic are limited compared to other 
biomarkers. Considering the blinded validations conducted for most of 
the tested treatments, it is very likely, however, that remission rates will 
in fact be enhanced after stratification. 

In addition to the PPV/nPPV, the NNT provides further information 
on the size of the effect that we could expect when assigning patients 
of different biomarker subgroups to their biomarker-recommended 
treatment, compared to treatment-as-usual on a trial-and-error ba-
sis. The NNTs reported in the previous chapters can be considered a 
stratification simulation in pre-collected EEG datasets. They indicate 
in each biomarker subgroup how many patients need to be treated with 
the biomarker-recommended active treatment to get one more remit-
ter than in the full, unstratified group that received active treatment 
and for which EEG data was available. The resulting NNTs for Brain-
marker-I in depression demonstrate that the effect we found is of the 
same order of magnitude as the NNT reported for tricyclic and SSRI 
treatment compared to placebo (Arroll et al., 2009). Since we do not 
compare active vs inactive treatment, but stratified active vs non-strat-
ified active treatment, this effect is clinically meaningful and arguably 
stronger than the antidepressant vs placebo effects.

As the amount of determined Brainmarker-I subgroups is rather small 
(3 groups total) and the investigated interventions numerous, some 
overlap of more first-line and more second-line treatment options was 
to be expected. For instance, Brainmarker-I predicted better clinical im-
provement in response to both sertraline, ECT and higher frequency 
TMS (18/20 Hz) treatment for the slow iAF subgroup. Naturally that 
doesn’t mean that the biomarker advises an individual with a first-
line depression to be prescribed ECT, although some might argue for 
administering rTMS earlier during the disease course. Instead, these 
findings suggest a stepped stratified care approach where the biomark-
er aids in informing a stepped-care decision, i.e., out of multiple evi-
dence-based treatments that can be considered first-line or mild inter-
ventions, the patient is stratified to the option with the best likelihood 
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of improvement, while for more difficult-to-treat patients, a different 
range of interventions is considered for stratification (see Figure 6.1 
reprinted from (Arns et al., 2023)).
Self-evidently, the stratification advice should be seen as a tool that 
advises the treating physician to choose the best treatment while at 
the same time still taking into account the patient’s treatment history, 
sensitivities (e.g., medication), failed treatment attempts and more.  

Figure 6.1. Stepped care versus stratified psychiatry (following page) (reprinted from Arns 
et al., 2023 with permission)
A. Example of the traditional stepped care approach (top), highlighting the large number of 
treatment attempts that many patients have to go through. This is contrasted with strati-
fied care (bottom), informing stepped care by means of biomarkers such as Brainmarker-I, 
thereby reducing the number of treatment steps. B. Response and remission rates of large 
clinical trials or meta-analyses for different first-line depression treatments (light blue area 
on the left) and interventions typically described for difficult-to-treat depression (light-grey 
area on the right), indicating no significant difference within the modalities. Percentages 
above bar graphs depict expected change in remission rate with stratification as advised 
by Brainmarker-I. These percentages reflect normalized positive predictive values (nPPV), 
demonstrating the expected change in remission rate after stratification relative to group 
remission rate. Brainmarker-I advice is summarized by the color scale, e.g. nPPV percentages 
marked in blue indicate better chances of remission for the low decile subgroup, pink for the 
synchronized subgroup and yellow for the higher decile subgroup.  
CBT: cognitive behavior therapy; IPT: interpersonal therapy; NS: not significant, SSRI: selec-
tive serotonin reuptake inhibitor; SNRI: serotonin norepinephrine reuptake inhibitor; ECT: 
electroconvulsive therapy; rTMS: repetitive transcranial magnetic stimulation; TRD/DTT: 
treatment-resistant depression/difficult-to-treat depression.
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EFFECTIVENESS VS EFFICACY 

As mentioned above, the nature of the stratification approach can aid 
in bridging the translational gap, bringing biomarkers into the clinic. 
The here adopted approach to identify biomarkers, examines effec-
tiveness, as assessed by clinical trials, as opposed to efficacy, tested 
in RCTs. Although RCTs are usually regarded as the gold standard of 
research trials, there are some limitations to their real-world value. 
One issue with RCTs is that they often deploy strict exclusion criteria, 
meaning that only a limited sample of the actual patient population 
is effectively included in these studies (see (Taipale et al., 2022) for 
a review on stringent exclusion criteria in psychosis research). This 
limits clinical applicability since most patient populations, especially 
more difficult-to-treat patients usually have a host of comorbidities, 
complementary medication and a complicated treatment history, all 
of which are often exclusion criteria (Koslow et al., 2010). The ap-
proach that this project has followed may be less controlled (due to 
heterogeneous clinical datasets including patients with medication 
and comorbidities) but allows for broader implementation which is 
crucial if the biomarker is supposed to be of any real-life value. 
In addition to the lack of heterogeneity in most RCTs, it has fur-
thermore been shown that treatment response to the active inter-
vention in RCTs decreases with increasing likelihood of receiving 
placebo treatment. This effect, coined ”lessebo” effect by Sinyor et al. 
(Sinyor et al., 2010), is hypothesized to be related to the heightened 
expectation of a negative event occurring (here: receiving placebo in-
stead of active treatment) – a thought pattern pervasive in depression 
patients. This phenomenon could potentially be relevant in clinical 
practice, too, however, the impact of it has been shown to decrease 
with a lower chance of placebo administration. One study where 
such effects can be observed is the EMBARC study which showed no 
significant difference in HDRS outcomes between placebo and active 
compound sertraline at week 8 due to a high placebo remission rate 
of 33% and simultaneous comparatively low improvement following 
sertraline (39% remission compared to 47% in iSPOT-D which tested 
only active treatments) (Arns, Bruder, et al., 2016; Nguyen et al., 2022; 
Webb et al., 2019). RCTs might thus underestimate treatment effects 
achieved in clinical practice, if the likelihood to receive the placebo is 
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high. On the other hand, RCTs can also exaggerate treatment effect 
compared to real-life findings due to more intensive clinician atten-
tion in the RCT than is feasible in standard practice and due to high-
er levels of comorbidities in the effectiveness trial that are generally 
harder to treat (van der Lem et al., 2012; Singal et al., 2014). 
Moreover, setting up and conducting a well-run RCT requires re-
sources and time; often many years pass from study design to even-
tual publication (Ross et al., 2012). During this time, patients would 
still be treated according to a trial-and-error approach. The question 
arises whether it can be ethically justified to deny patients a tool that 
can potentially lead to faster and stronger clinical improvement and 
can do no harm. Although it will be valuable to confirm the present-
ed results on the iAF biomarker in a more controlled, systematic way, 
making RCTs a prerequisite for clinical implementation of biomark-
ers could be considered unethical. 

A blinded out-of-sample replication approach, as utilized in the pre-
vious chapters could function as an alternative to double-blind pla-
cebo-controlled RCTs to guarantee robustness of potential findings 
and clinical value of the identified biomarker.

ADHD POTENTIAL WORKING MECHANISMS & BIOMARKERS

Although the main focus of this thesis lies on biomarkers for depres-
sion treatment, Brainmarker-I has first shown merit for ADHD treat-
ment stratification. The study summarized in Chapter 3 was informed 
on earlier findings, for instance in iSPOT-A where a slow iAF indicat-
ed non-response to stimulant medication in adolescent boys (Arns et 
al., 2008, 2018), and by Krepel et al., suggesting better remission rates 
for neurofeedback in boys with a slow iAF (Krepel et al., 2020).

Although a lengthy discussion is outside the scope of this work, a note 
on NFB seems warranted due to persistent criticism and inconclusive 
meta-analyses that question its value (Cortese et al., 2016). The repu-
tation of NFB for ADHD has long suffered from a lack of restrictions 
and consistency, for instance in the protocols, EEG set-ups, reward 
thresholding and reward signals used (Arns, Heinrich, et al., 2014). 
When NFB protocols are chosen that have been tested, are backed 
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by research, and preferentially informed by a baseline EEG, response 
and remission rates are suggested to be high (Arns, Drinkenburg, & 
Kenemans, 2012; Krepel et al., 2020; Monastra et al., 2002). However, 
despite being able to show significant symptom improvement after 
NFB, a recent double-blind RCT could not demonstrate a significant 
difference in treatment effect between NFB and control group (The 
Neurofeedback Collaborative Group et al., 2021), albeit treatment ef-
fects at 2-year follow-up were similar to treatment with methylpheni-
date or multicomponent behavior therapy  (The Neurofeedback Col-
laborative Group et al., 2022).  One reason for the lack of difference in 
this RCT and other studies might be the multimodal nature of many 
neurofeedback interventions, that often provide lifestyle and sleep ad-
vice, in addition to 30-40 intensive training sessions where patients 
may enjoy undivided attention by the NFB clinician. These interven-
tions are usually also applied in the sham group and might contribute 
as much to treatment success as the NFB training itself. Nonetheless, 
a recent review of RCTs and open label trials, applying standard pro-
tocols, found medium to large effect sizes, confirming that NFB can 
be considered a valuable alternative to pharmacological treatment in 
ADHD (Arns et al., 2020) with sustained benefit beyond 2 years. 

In the iSPOT-A study, that served as basis for Chapter 3, a lack of 
the typical maturational iAF trajectory was found in non-responders, 
arguing for a stunted development in these patients, and suggesting 
a different underlying etiology in this slow iAF subgroup. Although 
the iAF is traditionally considered a trait marker with a solid heredi-
tary component (Van Beijsterveldt & van Baal, 2002; Posthuma et al., 
2001) which remains fairly stable across time (Kondacs & Szabó, 1999), 
some studies have suggested that iAF can normalize with successful 
treatment. For instance, slowed iAF in chronic pain patients - poten-
tially slowed down as a result of the chronicity - gradually increased 
after successful pain relief (Sarnthein et al., 2006). Ulrich et al. al-
ready found early on that responders to antidepressant medication 
showed a slight increase in iAF of 0.5 Hz while this was not the case 
in non-responders who were characterized by a slow iAF (Ulrich et 
al., 1984). Since there is no iAF post-treatment data available for the 
slow iAF subgroup that showed a higher likelihood for remission in 
Krepel et al. (Krepel et al., 2020), it is not possible to draw any conclu-
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sions on potential changes in iAF based on the study described in this 
thesis. However, it is conceivable that a normalization of iAF occurs 
with symptom relief, through the alleviation of sleeping problems. 
ADHD is commonly characterized by diminished sleep quality, lead-
ing to increased daytime sleepiness and thus to the typically experi-
enced symptoms of decreased attention and heightened impulsivity 
– assumed to be a mechanism counteracting said drowsiness (Ryan 
et al., 2019). Sleep deprivation has been shown to decrease iAF, which 
correlated with an increase in sleepiness (Quiquempoix et al., 2023). 
Klimesch proposed that this was driven by an increase in power in 
the slow alpha band and a decrease in the fast alpha band, potential-
ly reflecting a means to counteract drowsiness in those individuals 
(Klimesch, 1999). This could explain the iAF slowing in this subgroup 
which might be ameliorated by an improvement in sleep quality. As 
mentioned before, NFB is often augmented by sleep hygiene proto-
cols, and has been shown to mitigate sleeping problems which cor-
related with treatment effect (Ryan et al., 2019). It might therefore 
treat a distinct ADHD phenotype, characterized by sleeping problems 
and iAF slowing. 
Stimulant medication, on the other hand, might be more adequate for 
an ADHD subgroup presenting with no sleep problems, since stimu-
lants can aggravate already dysfunctional sleep patterns and provide 
better symptom relief in patients who have longer sleep duration 
(Ryan et al., 2019). 

Biomarkers for ADHD have mostly focused on the diagnostic aspect. 
A recent review summarized the literature on predictive imaging bio-
markers for various treatments of ADHD including the two previous-
ly mentioned studies by Arns and Krepel, the here presented Brain-
marker-I findings and one more study, that found no difference in 
iAF between responders and non-responders to MPH or dexamphet-
amine (Michelini et al., 2022). The review concludes that prospective 
testing of biomarkers is required before actual clinical implementa-
tion. Although this would indeed be very valuable, we propose that 
Brainmarker-I can already be implemented, since the stratification 
approach ensures stratification to an evidence-based intervention 
without denying a specific treatment, as argued above. 
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For NFB, even fewer predictive biomarkers have been suggested and 
sufficiently tested (Buitelaar et al., 2022). Identifying valuable bio-
markers is thus even more relevant. Biomarkers measured with EEG 
might be particularly valuable since the EEG could simultaneously be 
utilized to assist NFB protocol choice. 

HYPOTHESES OF THE UNDERLYING NEUROBIOLOGY IN DEPRESSION

Importantly, Brainmarker-I is not suggested or intended to explain 
the working mechanism of any tested treatment. Although this work 
ventures to propose potential hypotheses (e.g. see entrainment and 
phase dependence hypotheses in Chapter 5), the studies presented 
here have not tested potential neurobiological bases systematically 
and the following paragraphs are therefore mere conjecture. 

One idea presented in this work is that of TMS pulses entraining 
endogenous oscillations. There is broad evidence supporting this 
hypothesis (see Chapter 5). However, the question remains whether 
this entrainment also plays a role in enhancing treatment response. 
In Chapter 4 and 5, and in several prior studies (Corlier et al., 2019; 
Roelofs et al., 2020), we saw that administering 10 Hz rTMS to pa-
tients whose iAF was already close to the stimulation frequency of 10 
Hz results in higher remission rates, suggesting that entrainment of 
the endogenous oscillations indeed fosters symptom improvement. 
This moreover suggests that stimulating each patient at their indi-
vidual best frequency might enhance clinical improvement. A very 
recent study tested this by stimulating each patient at their respec-
tive iAF (George et al., 2023). In addition, one patient group received 
TMS stimulation that was synchronized to the patient’s preferred 
oscillatory phase, i.e. the phase where the individual’s prefrontal al-
pha oscillation led to strongest BOLD response in the dorsal ACC. 
One conclusion from this small study was that entrainment is only 
achieved in the subgroup that received synchronized stimulation at 
their individual best frequency, not in the unsynchronized subgroup. 
The level of entrainment across sessions in this group was correlat-
ed with personal clinical improvement. However, entrainment did 
not lead to better overall improvement in the synchronized group 
compared to the unsynchronized group. Moreover, the overall treat-
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ment effect for both groups did not seem to differ – or might even 
be smaller - compared to what would be expected for standard 10 Hz 
treatment, although this is difficult to conclude since a 10 Hz con-
trol group was lacking. One issue could be that only the first pulse 
was synchronized to the preferred phase and not each pulse, as is 
common in a closed-loop system. Applying a pulse at that preferred 
phase would shift the oscillation. This means that the following puls-
es would not be applied at that same preferred point of the oscil-
lation anymore, which might potentially still result in entrainment 
but not in stimulation at the preferred phase. In summary, this study 
indicates that stimulation individualized to the iAF might not result 
in improved treatment outcome which is supported by another small 
pilot study that found best treatment outcome to 10 Hz stimulation 
in patients with a 9 Hz iAF (Arns et al., 2010).
One possible explanation why not all entrainment to the iAF might 
lead to improved treatment response could be that, although differ-
ences in the iAF are also common in the general population, the aver-
age iAF of a middle-aged healthy adult lies around 9.8 Hz, while slow-
ing of iAF is often related to mental health problems, organic causes, 
white matter damage - for instance in Alzheimer’s disease - and other 
disorders (Puttaert et al., 2021; Rodriguez et al., 1999), as summarized 
in Chapter 3 and 4. Entraining such an unfavorable rhythm might 
thus not be beneficial since it is not a preferred rhythm of the brain 
to begin with. A faster (than usual) iAF is generally considered to be 
more beneficial, likely reflecting faster information transfer in a thal-
amocortical loop; it is, moreover, related to improved cognitive per-
formance, as discussed before, and linked to acute (e.g. task-related) 
vigilance and arousal (Ramsay et al., 2021). However, a general high 
state of arousal might be reflective of a different pathological subtype, 
characterized by hyper-arousal, which is possibly related to trauma 
(Wahbeh & Oken, 2013). Entraining this faster, hypervigilant rhythm, 
again, might not be therapeutic. Such a hypervigilant biotype, prelim-
inarily proposed by Williams, is characterized by hyperconnectivity in 
the frontoparietal attention network which shows hypoconnectivity 
with the positive affect circuit and has been observed in social anx-
iety (Williams, 2016). Why these or similar subtypes might respond 
better to very high-frequency 18 Hz stimulation or ECT (for slow iAF) 
or to low-frequency 1 Hz stimulation (for the faster, hypervigilant 



161

biotype) is unknown. One explanation might be that TMS can elicit 
different synaptic plasticity mechanism, such as inhibitory long-term 
depression (LTD) and facilitatory long-term potentiation (LTP) that 
are responsible for the longer-lasting effects of magnetic stimulation. 
Although low-frequency TMS is commonly assumed to be inhibitory 
and high frequency stimulation to be excitatory, this relationship has 
proven more complicated. At the single cell level, single-pulse TMS 
can have both excitatory and inhibitory effects (Romero et al., 2019), 
and both LTD-like and LTP-like plasticity have been observed after 
low-frequency TMS, depending on the stimulated phase (Baur et al., 
2020). However, despite a trend towards LTP-like plasticity when the 
trough of the oscillatory phase, i.e., the high-excitability state, was 
stimulated with LF stimulation, LTD-like plasticity was generally 
more readily induced than LTP-like plasticity. Inhibiting this afore-
mentioned hyperconnected frontoparietal attention network in the 
hypervigilant biotype, that Williams et al. proposed, through 1 Hz 
stimulation might, thus, induce LTD-like plasticity that could nor-
malize network connectivity. High frequency stimulation, includ-
ing 18 or 20 Hz protocols, on the other hand, usually have excitatory 
effects (Huerta & Volpe, 2009). However, it has been suggested that 
whether TMS leads to excitatory and inhibitory effect depends on 
multiple diverse internal and external factors (Hartwigsen & Silvanto, 
2023). For instance, the brain’s excitability state fluctuates depending 
on task-demand, resting condition or other internal factors such as 
fatigue, but is also influenced by external aspects, such as stimulation 
intensity, frequency and duration. 

The potential mechanism underlying the findings of lower remission 
rates in patients with a 9 Hz iAF receiving higher frequency stimu-
lation has been discussed in Chapter 5. Taking into account the re-
sults by Baur et al., suggesting that plasticity is linked to excitability 
states, it is indeed conceivable that 18 Hz simultaneously inhibits and 
excites neurons within one cycle (i.e., through stimulating both the 
peak and the trough), cancelling out these effects. In a slower alpha 
oscillation, the TMS pulse would stimulate a different oscillatory 
phase at each cycle, thereby being more likely to trigger more of the 
high-excitability states.
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We are only beginning to understand how rTMS affects different 
neuronal and non-neuronal types of plasticity and exerts its effect in 
mental disorders. Testing the above hypotheses systematically should 
be a focus of future research.

IMPLICATIONS OF THIS WORK & FUTURE DIRECTIONS 

As shortly touched upon in the introduction, depression is a 
life-threatening disorder. 
Although one might think that prescribing a non-effective treatment 
(for the individual) first and only finding an effective alternative at a 
later disease stage only postpones symptom relief, research has shown 
that that is not the case. As mentioned before, an untreated (or un-
successfully treated) depression often becomes more severe (Fils et al., 
2010; Fogel et al., 2006; Ghio et al., 2014), and longer disease course 
and higher symptom severity make it harder to treat a depression ef-
fectively and elevate the risk for relapse (Buckman et al., 2018; O’Leary 
et al., 2000). Even more importantly, severe depression and time to full 
remission are strong predictors of suicide attempt, and higher depres-
sion severity increases the risk of death by suicide (Riera-Serra et al., 
2023). Thus, identifying the best option out of the available first-line, 
second-line or late-line interventions can potentially be life-saving. 

An evident research question arising from the here presented sug-
gestions on entrainment with 10 Hz stimulation has been discussed 
above. Studies investigating whether stimulation at the iAF would 
lead to even better symptom improvement are at best inconsistent. A 
more promising approach might take into account the individual brain 
state during or prior to stimulation, as suggested by Sack et al. (Sack et 
al., 2023). For instance, applying the TMS pulse at the preferred phase 
might have clinical merit, if phase-locking is done correctly (Schilberg 
et al., 2021). However, a personalized closed-loop EEG-TMS approach 
is not viable for clinical implementation yet and more research is 
needed to bring this set-up to the clinic (Zrenner & Ziemann, 2023). 

In the meantime, complementing Brainmarker-I by other, potentially 
more nuanced predictors to refine treatment advice would likely re-
sult in even higher likelihood to achieve remission. As summarized in 
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Chapter 2, there are multiple candidates to augment Brainmarker-I. In 
addition, besides EEG and fMRI markers, cardiac, genetic, neuroendo-
crinal and behavioral predictors could likely add relevant information 
not provided by neurophysiology. 
For ADHD, Brainmarker-I was shown to be able to stratify boys to dif-
ferent treatments, however the available data in girls was limited such 
that no prediction could be made. Since ADHD is more commonly di-
agnosed in boys, a male-female gap exists in ADHD research, making 
findings for girls even more relevant (Faraone et al., 2000). Similarly, 
since ADHD often persists in adulthood, studies examining stratifica-
tion biomarkers for adults with ADHD would be valuable.

Naturally, identifying biomarkers for treatment outcome in disorders 
other than depression and ADHD, is highly relevant. Since iAF shows 
transdiagnostic value, it would be interesting to investigate whether it 
has any predictive potential in other disorders. 
To be able to follow a rigorous testing and validation approach in het-
erogeneous clinical datasets in order to identify the best treatment for 
each subgroup from a broad range of treatment options, data sharing 
is of utmost importance. The research presented in this thesis would 
not have been possible without collaborators sharing their clinical and 
neurophysiological data. While data sharing initiatives are underway 
(e.g. TDBRAIN) (Arns et al., 2023; van Dijk et al., 2022; Koslow et al., 
2010), more work is needed to facilitate direct replication attempts 
and pave the way for more robust research in precision psychiatry.

THE NEW STATE-OF-THE-ART OF EEG BIOMARKERS IN DEPRESSION

This thesis starts with an overview of the current issues that bio-
marker research is facing and summarizes the state-of-the-art of im-
aging biomarkers for TMS treatment in depression. 

The different chapters contributed to and improved on this research 
by presenting a robust transdiagnostic treatment stratification bio-
marker based on the optimized iAF. What makes this biomarker par-
ticularly valuable is the replication effort in independent data that 
all findings had to undergo, strengthening its robustness. As Widge 
and colleagues explain, there are multiple methods that can be de-
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ployed in biomarker research “that increase the reliability of con-
clusions. Chief among these is independent sample verification or 
cross-validation—reporting the algorithm’s predictive performance 
on a sample of patients separate from those originally used to devel-
op it. Cross-validation has repeatedly been highlighted as essential in 
the development of a valid biomarker” (Widge et al., 2019). Validating 
new findings in unseen, independent samples (preferably from other 
labs and locations) in blinded predictions, furthermore ensures that 
the identified marker can adequately deal with the high heterogene-
ity of many mental disorders, allowing for broader applicability of 
the marker to diverse patient populations. This is, moreover, fostered 
both by the stratification approach and the ubiquitous nature of the 
alpha rhythm. 

Other points of critique regarding EEG biomarkers were underre-
porting of negative findings, small sample size, and differences in 
methodology applied in studies of the same predictor, resulting in 
a lack of direct replication (Widge et al., 2019). In Chapter 1 of this 
thesis, imaging biomarker studies, amongst them iAF studies, were 
specifically chosen based on robustness including a minimum sample 
size of 88 and/or independent out-of-sample replications. Available 
null findings and unsuccessful replications were taken into account 
in evaluating a biomarker’s robustness. Lastly, differences in meth-
odology in prior studies were acknowledged and EEG processing was 
optimized and unified in the development of Brainmarker-I to make 
findings comparable and to ensure direct replication. 

Five years after this meta-analysis by Widge et al. was published, the 
same author specifically argued for the value of the stratification 
principle in biomarker research. Once more the relevance of external 
validation is stressed - here mainly focused on machine learning pre-
dictors, where external validation is even more crucial (see discussion 
in Chapter 1) (Grzenda & Widge, 2023) - and the authors caution that 
the translation to clinical practice is often forfeited due to lack of 
such external validation and methodological flaws. The present work 
took many of the mentioned criticisms to heart and adopted import-
ant measures to address this translational gap. Thanks to rigorous 
testing and thorough validation, this thesis can present a robust EEG 
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biomarker, that can inform treatment for ADHD and depression - at 
different levels of depression severity - and that is currently being 
evaluated prospectively in clinical practice. If this trial run in a clin-
ical setting indeed proves enhanced treatment outcome following 
Brainmarker-I advice, this would mark the beginning of broad bio-
marker implementation in clinical practice.   
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ENGLISH SUMMARY

Depression is a severe and debilitating disorder that is high-
ly prevalent and, especially when unsuccessfully treated, can 
have detrimental effects on the lives of those affected, one of 

the most severe effects being ending one’s own life. Finding the best 
treatment for the individual early on in the course of the illness is 
therefore crucial. Despite overall effectiveness of different approved 
depression treatments, a substantial number of patients experiences 
no or only little symptom improvement. With increasing failed treat-
ment attempts, the likelihood of achieving remission diminishes, and 
after multiple futile treatment courses a patient is considered diffi-
cult-to-treat. These patients often move on to receive noninvasive 
brain stimulation, such as rTMS, which shows good efficacy at the 
group level, but still results in a considerable number of non-remitters. 
One strategy to enhance treatment response is individualizing treat-
ment to the patient, so called precision psychiatry. Within the con-
text of precision psychiatry, stratified psychiatry can aid in identifying 
the best out of multiple approved treatments for a given disorder, for 
instance by means of imaging biomarkers. Throughout the years, a 
multitude of MRI and EEG markers has been examined, however valid 
criticism was raised regarding the quality of EEG biomarker research, 
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such as publication bias and the lack of direct and out-of-sample vali-
dations, concluding that EEG biomarkers are not yet ready for clinical 
implementation.  

The present work first introduces the burden of depression and details 
the need for reliable biomarkers for treatment outcome in Chapter 1. It 
summarizes the scientific evidence for repetitive transcranial magnetic 
stimulation (rTMS) as an effective treatment for depression, especial-
ly for difficult-to-treat cases, and the concepts of precision psychiatry, 
and more specifically stratified psychiatry are explained. Neuroimaging 
modalities EEG and fMRI are shortly introduced, leading up towards 
Chapter 2 that reviews the literature of robust EEG and MRI biomark-
ers for TMS treatment in depression.

In Chapter 2 the current issues with biomarker research are shortly 
summarized. Only MRI and EEG biomarker studies with sample sizes 
of ≥ 88 patients or studies that attempted external replication were in-
cluded in this systematic review, ensuring robustness of potential iden-
tified biomarkers. In total 2 MRI and 2 EEG biomarkers were identified 
as robust: network mapping and DLPFC-sgACC functional connectiv-
ity for MRI, and frontal-midline rACC theta and iAF for EEG.

The subsequent chapters focus on one of these identified robust bio-
markers, the iAF, which had already been investigated as predictor for 
both ADHD and MDD albeit with somewhat inconsistent results. One 
potential reason for these discrepancies in findings could be the differ-
ences in methodology, particularly data cleaning, utilized across these 
studies. Thus, in Chapter 3, EEG processing was first optimized in a 
large clinical dataset of over 4000 people for optimal detection of the 
alpha peak. The resulting biomarker, Brainmarker-I was then normal-
ized for age and sex and tested for treatment stratification in ADHD. 
It was demonstrated that Brainmarker-I can successfully stratify boys 
with a relatively faster iAF to stimulant medication and those with a 
slower iAF to multimodal neurofeedback treatment. These findings 
were subsequently replicated in unseen independent datasets through 
blinded prediction of treatment outcome, thereby lending credibility 
to the presented findings and improving on criticism pertaining prior 
biomarker research.  
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In Chapter 4, the same biomarker was shown to extend to depression 
treatments, indicating stratification potential of patients with a first-
line depression to sertraline and those with a difficult-to-treat depres-
sion to either 1 Hz or 10 Hz rTMS or electroconvulsive therapy (ECT). 
In addition to replicating the previous finding that patients with an iAF 
close to the stimulation frequency of 10 Hz are more likely to remit to 
10 Hz rTMS, higher remission rates were found in a fast-iAF subgroup 
for 1 Hz rTMS and for a slow-iAF group for ECT. These new findings 
were once again replicated in independent, out-of-sample validations 
in a blinded fashion. This complements the third chapter, showing that 
Brainmarker-I represents a transdiagnostic treatment stratification bio-
marker for ADHD and MDD. This marker is both easy to collect and 
to interpret and, thanks to the stratification approach, can be applied 
without risk, which aids in straightforward realization in clinical prac-
tice.

In Chapter 5, the predictive potential of Brainmarker-I for depression 
was examined for higher frequency deep TMS (18 Hz), indicating that 
it could represent an alternative to ECT treatment in the slow iAF sub-
group. A successful replication in 20 Hz TMS data that administered 
stimulation with a figure-of-eight coil suggested a higher relevance of 
stimulation frequency than coil shape. These findings enable strat-
ification between TMS protocols only, which is particularly valuable 
since many patients seeking TMS treatment would opt for TMS rather 
than ECT at this stage of their treatment history, for fear of side effects. 
Furthermore, it enables full implementation of Brainmarker-I at TMS 
clinics that have no means to provide ECT treatment. The same study, 
additionally, discussed the indication that stimulation with a frequency 
of 18 Hz might not lead to entrainment of endogenous oscillations at 
the harmonic frequency of 9 Hz, and suggested that it might in fact 
lead to an unbalancing of the oscillators. 

Thanks to rigorous testing in multiple, diverse clinical datasets and val-
idation of effects in independent samples, the present work presents a 
robust transdiagnostic stratification biomarker that is ready for imple-
mentation in clinical practice.  
 



196



197

NEDERLANDSE SAMENVATTING

Depressie is een ernstige en slopende stoornis die veel voor-
komt en die, vooral indien deze niet succesvol behandeld 
wordt, nadelige gevolgen kan hebben voor het leven van 

de getroffenen, met als een van de ernstigste gevolgen het beëindi-
gen van het eigen leven. Het vinden van de beste behandeling voor 
het individu in een vroeg stadium van de ziekte is daarom cruciaal. 
Ondanks de algemene effectiviteit van verschillende goedgekeurde 
depressiebehandelingen, ervaart een aanzienlijk aantal patiënten 
echter geen of slechts gedeeltelijke symptoomverbetering. Met elke 
onsuccesvolle behandelingspoging neemt de kans op het bereiken 
van remissie af en na meerdere onsuccesvolle behandelingskuren 
wordt een patiënt als moeilijk te behandelen gezien. Deze patiënten 
stappen vaak over op niet-invasieve hersenstimulatie, zoals rTMS, die 
een goede werkzaamheid op groepsniveau laat zien, maar nog steeds 
resulteert in een substantieel aantal niet-remitters. Een strategie om 
behandelrespons te verbeteren is het individualiseren van de behan-
deling naar de patiënt, de zogenaamde precisiepsychiatrie. Binnen 
de context van precisiepsychiatrie kan gestratificeerde psychiatrie 
helpen bij het identificeren van de beste van meerdere goedgekeurde 
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behandelingen voor een bepaalde stoornis, bijvoorbeeld door middel 
van neuroimaging biomarkers. In de loop der jaren is een veelheid 
aan MRI- en EEG-markers onderzocht, maar er is terechte kritiek 
geuit op de kwaliteit van EEG biomarkeronderzoek, zoals het ont-
breken van directe en out-of-sample validaties, met als conclusie dat 
deze nog niet klaar zijn voor klinische implementatie.

Dit proefschrift introduceert eerst in hoofdstuk 1 de last van depres-
sie en beschrijft de behoefte aan betrouwbare biomarkers voor het 
voorspellen van behandeluitkomst. Het wetenschappelijk bewijs voor 
repetitieve transcraniële magnetische stimulatie (rTMS) als effectieve 
behandeling voor depressie, met name voor moeilijk te behandelen 
gevallen, wordt samengevat en de concepten van precisiepsychiatrie 
en gestratificeerde psychiatrie worden toegelicht. EEG en fMRI als 
neuroimaging modaliteiten worden kort geïntroduceerd, wat leidt 
tot hoofdstuk 2 waarin de literatuur over robuuste EEG en MRI bio-
markers voor TMS-behandeling bij depressie wordt besproken. Hier 
worden eerst de huidige problemen met biomarkeronderzoek kort 
samengevat. Alleen MRI en EEG biomarker studies met een steek-
proefgrootte van ≥ 88 patiënten of studies die probeerden hun bev-
indingen te repliceren in externe data, werden opgenomen in deze 
systematische review, om de robuustheid van elke potentieel geïden-
tificeerde biomarker te garanderen. In totaal werden 4 biomarkers 
geïdentificeerd als robuust: network mapping en DLPFC-sgACC 
functionele connectiviteit voor MRI en frontale-midlijn rACC theta 
en individuele alfa piek frequentie (iAF) voor EEG.

In de volgende hoofdstukken wordt specifiek ingegaan op één van 
deze geïdentificeerde robuuste biomarkers, de iAF, die al eerder was 
onderzocht als voorspeller voor zowel ADHD als MDD, alhoewel met 
enigszins inconsistente resultaten. Een mogelijke reden voor deze 
discrepanties in bevindingen zou kunnen liggen in de verschillen in 
methodologie, met name het opschonen van data, die in deze studies 
is gebruikt. Zo werd in hoofdstuk 3 in een grote klinische dataset van 
meer dan 4000 mensen de EEG-verwerking eerst geoptimaliseerd 
voor optimale detectie van de alfapiek. De resulterende biomark-
er, Brainmarker-I, werd vervolgens genormaliseerd voor leeftijd en 
geslacht en getest voor stratificatie van behandeling bij ADHD. 
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Er werd aangetoond dat Brainmarker-I gebruikt kan worden door 
jongens met een relatief snellere iAF te stratificeren naar stimulantia 
en jongens met een langzamere iAF naar multimodale neurofeed-
backbehandeling. Deze bevindingen werden vervolgens gerepliceerd 
in onafhankelijke datasets door middel van geblindeerde voorspell-
ing van behandeluitkomst, waardoor betrouwbaarheid werd ge-
geven aan de gepresenteerde bevindingen en eerdere kritiek op bio-
markeronderzoek ondervangen werd. 

In hoofdstuk 4 werd beschreven hoe deze zelfde biomarker, Brain-
marker-I, ook toegepast kan worden bij depressie, waarbij patiënten 
met een eerstelijns depressie konden worden gestratificeerd naar ser-
traline en patiënten met een moeilijk te behandelen depressie naar 
1 Hz, 10 Hz rTMS of elektroconvulsietherapie (ECT). Naast het rep-
liceren van de eerdere bevinding dat patiënten met een iAF rond de 
10 Hz stimulatiefrequentie meer kans hebben op remissie na 10 Hz 
rTMS, werden hogere remissiepercentages gevonden in een snelle 
iAF-subgroep voor 1 Hz rTMS en voor een langzame iAF-groep voor 
ECT. Deze nieuwe bevindingen werden opnieuw blind gerepliceerd 
in onafhankelijke, out-of-sample validaties. Dit laat ter aanvulling op 
het tweede hoofdstuk zien dat Brainmarker-I een transdiagnostische 
biomarker voor behandelstratificatie bij ADHD en MDD is. Deze 
marker is zowel eenvoudig te verzamelen als te interpreteren en kan, 
dankzij de stratificatiemethode, zonder risico worden toegepast, wat 
bijdraagt aan een directe realisatie in de klinische praktijk.

In hoofdstuk 5 werd Brainmarker-I voor depressie uitgebreid met 
diepe-TMS die een hogere stimulatiefrequentie (18 Hz) gebruikt met 
een helmspoel en die een alternatief kan bieden voor ECT-behandel-
ing in de trage iAF-subgroep. Een succesvolle replicatie in 20 Hz TMS 
data waarbij stimulatie werd toegediend met een gebruikelijke figure-
of-eight spoel suggereerde dat dit effect direct gerelateerd was aan 
de stimulatiefrequentie en niet aan de spoelvorm. Deze bevinding-
en maken stratificatie tussen uitsluitend TMS-protocollen mogelijk, 
wat bijzonder waardevol is omdat veel patiënten die TMS-behan-
deling wensen in dit stadium van hun behandelgeschiedenis eerder 
voor TMS dan voor ECT zouden kiezen uit angst voor bijwerkingen. 
Daarnaast maakt het de volledige implementatie van Brainmarker-I 
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mogelijk in TMS-klinieken die geen ECT kunnen aanbieden. Dezelf-
de studie bespreekt bovendien de indicatie dat stimulatie met een 
frequentie van 18 Hz mogelijk niet leidt tot entrainment van endog-
ene oscillaties op de harmonische frequentie van 9 Hz, en suggereert 
dat het zelfs zou kunnen leiden tot een onbalans van de oscillatoren. 
Dankzij rigoureuze tests in meerdere, diverse klinische datasets en 
validatie van effecten in onafhankelijke datasets, levert het huidige 
werk een robuuste transdiagnostische stratificatiebiomarker die klaar 
is voor implementatie in de klinische praktijk.
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IMPACT OF RESEARCH

As summarized throughout this thesis, depression is a 
life-threatening disorder. When not successfully treated, 
symptoms can become more severe and longer disease 

course and higher symptom severity complicate treating the disor-
der effectively and elevate the risk of relapse. In addition, symptom 
severity and time until full remission are positively correlated with 
risk of suicide attempts and death by suicide. Prescribing an effective 
treatment (for the individual) as early as possible is therefore crucial 
and can potentially be lifesaving. 

Stratified psychiatry can help in achieving remission earlier rela-
tive to standard treatment prescription, which usually follows a tri-
al-and-error approach regarding the order of evidence-based therapy 
attempts, by means of stratification biomarkers such as the one iden-
tified and validated in this thesis. Besides being potentially lifesaving, 
successful stratification can reduce the amount of disability-adjusted 
life years in people suffering from depression, enable improved func-
tioning in society and diminish the use of clinical resources. 
Likewise, faster symptom improvement in patients with ADHD can 
improve daily functioning, and thereby for instance educational per-
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formance in children with ADHD and mitigate the burden on the 
mental health system. 

The stratification biomarker introduced in this thesis was thorough-
ly investigated and identified as highly valuable for the prediction 
of treatment outcome in two common disorders, MDD and ADHD. 
Crucially for stratification, the biomarker predicted outcome differ-
entially for various established and effective types of therapy, which 
is necessary to be able to match every patient to their respective best 
treatment early in the therapy process. These findings provide the 
basis for implementation of these stratification principles in the 
clinic, replacing the current trial-and-error approach and thereby 
eliminating the negative consequences of multiple failed treatment 
attempts. Thorough optimization of pre-analysis data processing 
steps and, importantly, blinded out-of-sample validations utilizing 
the same data processing in unseen heterogeneous clinical data add 
to the value of Brainmarker-I. 

Crucially, the stratification approach and particularly the blinded, 
out-of-sample validations in independent datasets that were con-
ducted in the presented studies can inform and provide an example 
for future biomarker research. As discussed throughout this work, 
previous neuroimaging biomarker research suffered from method-
ological issues such as small sample sizes, underreporting of null 
findings and lack of direct and particularly out-of-sample replica-
tions. These aspects have been taken into account in the develop-
ment of Brainmarker-I, lending credibility and robustness to the pre-
sented results and assuring generalizability of the proposed method 
to clinical data acquired with differing equipment. 
Thanks to this robust approach of biomarker development, the pre-
sented conclusions can be assumed to be reliable and to provide con-
crete improvements in remission rates when employed prospective-
ly. We are proud to report that the here developed and introduced 
biomarker advice has indeed by now been implemented in regular 
clinical care for depression at a large mental healthcare clinic with 
multiple locations throughout the Netherlands. Naturally, the pre-
cise clinical value and applicability of Brainmarker-I remains to 
be determined and validated again by prospective feasibility trials, 
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now possible in these clinics. However, thanks to the nature of the 
stratification approach compared to a precision or personalized ap-
proach and due to the robust validation procedure applied, the risk 
of harming the patient through selection of a wrong treatment pre-
scription is minimized, since patients will always be prescribed an 
evidence-based treatment. Our biomarker-based stratification in this 
sense simply determines for each individual which of the multiple 
available evidence-based therapies to begin with. 

Although this concrete clinical implementation of our work rep-
resents a clear knowledge utilization with an impact on patients’ 
lives already today, our research, like other research, is the basis for 
future scientific developments to further optimize the here described 
stratification principles. For example, as the transdiagnostic value of 
iAF has already been successfully demonstrated in our work, Brain-
marker-I could represent a valuable predictor for treatment outcome 
in disorders other than depression and ADHD.

Moreover, the findings in Chapter 5 showing that a harmonic fre-
quency of the iAF might not entrain oscillations but even lead to 
worse treatment outcome might inform future research that inves-
tigates the question whether stimulation at the individualized fre-
quency can improve effectiveness. That MDD patients stimulated 
with a harmonic of their individual frequency showed diminished 
treatment effect might suggest that the individual brain state at the 
time of stimulation, such as the phase of the oscillation, could be 
more relevant than the frequency itself. 

In summary, this thesis provides perhaps the first clinically action-
able biomarker that can be - and in fact is already being - implement-
ed in mental health care practices. It, moreover, illustrates how treat-
ment stratification can act as a steppingstone to fully individualized 
precision psychiatry and can enhance remission rates and patients’ 
lives in the here and now. 
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